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ABSTRACT: 26 

River regulation in mountainous and high precipitation regions with hydropower dams often struggles to 27 

find the right balance between hydropower generation while ensuring flood protection for downstream 28 

inhabitants. The goal of hydropower generation is to keep reservoirs at the maximum pool as often as 29 

possible while for flood control, it is to maintain sufficient cushion in available storage to absorb an 30 

incoming flood wave. Using weather forecasts to proactively manage reservoir operations for such 31 

conflicting goals is now a well-known solution. However, this challenge of applying forecast-informed 32 

reservoir operations is magnified in developing regions where there is a paucity of ground data to track 33 

reservoir dynamics. In this study, we explore the utility of using publicly available precipitation forecast 34 

from the Global Ensemble Forecasting System (GEFS) with a fully satellite-based reservoir tracking 35 

framework called Reservoir Assessment Tool (RAT) to understand the potential of forecast-informed 36 

operations in highly mountainous and high precipitation regions that are mostly ungauged. We apply 37 

our investigation to the case of damaging floods that took place in 2018 in the Southern Indian state of 38 

Kerala where river regulation is carried out with a fleet of hydropower dams. Our results show that the 39 

precipitation forecast from GEFS has sufficient skill, if focused on trends and bias adjustment, to predict 40 

reservoir inflow peaks up to a week ahead of time where the trend for timing of the peak and rate of 41 

rise match well. Using our satellite-based RAT framework, we explore the range of actionable scenarios 42 

for dam operators that could potentially minimize downstream flood risk with this forecast-informed 43 

reservoir operations scheme. 44 
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1. Introduction 48 

Floods affect millions of people resulting in loss of life, livelihoods, and damage to infrastructure each 49 

year. An estimated 23% of the world population is directly exposed to catastrophic floods, among which 50 

about 90% live in low- to middle-income countries, with limited ability to cope with such disasters 51 

(Rentschler et al. 2022). Such floods, especially in mountainous regions with steep slopes can be made 52 

more disastrous by extreme precipitation events, such as the devastating floods and landslides in 53 

Uttarakhand, India, in 2013; in Kerala, India in 2018, and in South Korea in 2023 (Shah 2023; Shin 2023; 54 

Vijaykumar et al. 2021). An increase in the intensity and frequency of such extreme precipitation events 55 

has been observed globally, especially in the past decade (Dunn et al. 2020; Sun et al. 2021). Climate 56 

models suggest that such extreme precipitation events are very likely to keep increasing in frequency 57 

and intensity due to climate change making such floods more frequent (Fischer et al. 2015; 58 

Intergovernmental Panel on Climate Change 2014; Kharin et al. 2018; Li et al. 2021).  59 

Reservoirs play a crucial role in providing a cushion against such floods. However, they are often 60 

optimized for multiple purposes, such as flood control and hydropower, for maximizing the benefits of 61 

existing infrastructure (Ahmad and Hossain 2020). Due to the competing nature of optimization 62 

strategies of such reservoirs, floods that are exacerbated due to extreme precipitation events in 63 

mountainous regions pose additional risks for reservoir operations. For instance, hydropower dams in 64 

Kerala (India) in 2018 were faced with floods due to extreme precipitation, which were almost full for 65 

hydropower generation (Vijaykumar et al. 2021). This led to little-to-no storage cushioning to mitigate 66 
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the impending flood pulse, leading to full-scale devastation of the unattenuated flood pulse 67 

downstream. Consequently, the flood event claimed the lives of over 489 people, displaced over 1.4 68 

million people, and caused damages of more than $5 billion (Pramanick et al. 2022; Suresh et al. 2024).  69 

During such extreme flood events, forecasted information about the impending flood could be 70 

potentially useful in informing reservoir operators to be proactive. Recent forensic studies on the Kerala 71 

2018 floods present a dichotomy of views. Mishra et al. (2018) report that a week’s lead time in 72 

forecasting could have potentially mitigated the situation with proactive reservoir operations. On the 73 

other hand, a study by Sudheer et al. (2019) claims that no amount of forecasting could have helped 74 

given how anomalous and extreme the precipitation patterns were during that time. Regardless of the 75 

debate, the value of such forecasted information arguably depends on the flexibility in the operation of 76 

reservoirs afforded to the reservoir operators, because reservoirs are operated on predefined rule 77 

curves mixed with the dam operator’s situational awareness of the evolving situation. However, there is 78 

no doubt that if the peak of the catastrophic flood wave was forecasted sufficiently ahead of time and in 79 

an actionable manner, dam operators could have acted on the forecasted information early. For 80 

example, with a sufficient lead time, forecasted incoming flood can be potentially mitigated of its risk 81 

posed by reducing the peak flow rate downstream through early release to make room for flood storage 82 

(Saavedra Valeriano et al. 2010). 83 

With longer forecast lead times, the skill of the forecasts gradually degrades (Siqueira et al. 2020). 84 

Anghileri et al. (2016) reported that the value of long-term streamflow (seasonal to inter-annual) 85 
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forecasting has limited value for designing adaptive reservoir operation strategies. Instead, streamflow 86 

forecasting and reservoir optimization at a shorter time scales, with lead times of days to a few weeks, is 87 

more suited for preparedness against floods (Wang et al. 2012). In addition to flood preparedness, 88 

forecasted reservoir inflow can also pave the way for forecast-informed adaptive management for more 89 

efficient hydropower production where the dual and conflicting goals of flood control and hydropower 90 

can be maintained (Ahmad and Hossain 2020; Anghileri et al. 2016). 91 

Operational streamflow forecasting has been a topic of great interest, and decision support systems 92 

exist at varying spatial and temporal scales. For instance, the GloFAS system uses short-term daily 93 

meteorological forecasts and long-term climatological data to forecast streamflow globally using the 94 

Lisflood hydrological model (Van Der Knijff et al. 2010). This system performs well for medium-large 95 

sized river basins, with low basin water storage, but the performance decreases with decreasing 96 

drainage area, which is the case for most of the mountainous basins in the Southwestern coast of India 97 

such as in Kerala. Wu et al. (2012) developed the Global Flood Monitoring System (GFMS) which 98 

forecasts streamflow at a quasi-global scale, between 50°N-50°S up to a 5-day lead time driven by the 99 

GEOS-5 forecasted precipitation. While this system is generally able to detect floods with a probability of 100 

detection (POD) of 0.7, the performance reduces with the presence of river regulation that is not 101 

explicitly accounted for. 102 

By the end of the century, climate model projections estimate that dams may help reduce the exposure 103 

to floods for about 12.9%-20.6% of the population (Boulange et al. 2021). In spite of the important role 104 
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played by reservoirs, they are either not considered by hydrological models or their incorporation in 105 

modeling is highly parameterized due to a lack of availability of reservoir operations data (Alcamo et al. 106 

2003; Biemans et al. 2011; Haddeland et al. 2006; Hanasaki et al. 2006, 2018). Using publicly available 107 

satellite observations covering nearly the entire Earth, reservoir operations, including inflow, storage 108 

change, evaporation and outflow from dams, is now being inferred globally from space (Biswas and 109 

Hossain 2022; Kumar et al. 2024; Li et al. 2023).  110 

The Reservoir Assessment Tool (RAT) is one such publicly accessible and globally scalable tool, for both 111 

operational monitoring and historical analyses of reservoir operations. RAT leverages observations from 112 

multiple satellites to infer reservoir operations (Biswas et al. 2021; Das et al. 2022; Minocha et al. 2023). 113 

RAT has been set up operationally over various basins across the world for near-real time reservoir 114 

operations tracking, such as the Columbia, Mekong, Tigris-Euphrates, Kerala, and is used as an 115 

operational decision support system by stakeholders, such as the Mekong River Commission (MRC) and 116 

Columbia River Inter-tribal Fish Commission (CRITFC).  Given the debate surrounding the value of 117 

precipitation forecasting for proactive reservoir operations for Kerala 2018 floods and our ability to track 118 

reservoirs from space, we believe it is now important to put the satellite-based modeling of reservoir 119 

state within the context of exploring forecast-informed operations to investigate the issue further. 120 

For this study, using meteorological forecasts, including gauge corrected precipitation forecasts, and 121 

historical reservoir storage change, we have augmented RAT with a forecasting module. We assess the 122 

value added by the forecasting module of the RAT system in informing reservoir operators of forecasted 123 
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streamflow and exploring reservoir outflows based on actionable reservoir operation scenarios. 124 

Specifically, we investigate the utility of forecasts at different lead times over the mountainous basin of 125 

Kerala using the 2018 flood as our case study. Our choice for this region is representative of the vast 126 

regions in the tropical and developing world where rivers are regulated by hydropower dams, are flood 127 

prone and yet often lack ground measurement or public sharing of reservoir state information. The 128 

overarching research question of our study is, how effective are gauge-adjusted precipitation forecasts 129 

in informing reservoir operations in highly mountainous and high precipitating regions? In this study, we 130 

address the following objectives: 131 

● To test the effectiveness of forecasted inflow for flood preparedness in mountainous and 132 

high precipitation regions using forecasted precipitation by the Global Ensemble Forecast 133 

System calibrated to in-situ gauge observations in the South Indian region of Kerala. 134 

● To explore the range of actionable scenarios for dam operators that could have potentially 135 

minimized downstream flood risk of the Kerala 2018 floods with this forecast-informed 136 

reservoir operations scheme of RAT. 137 

2. Data and Methods 138 

2.1. Study Area 139 

We conducted the investigation over the Greater Periyar basin of Kerala, India. The Periyar river is the 140 

longest river in Kerala. Bounded by the Arabian Sea to the West and the Western Ghats mountains to 141 
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the East, Kerala’s topography varies from low-lying coastal areas to highly mountainous with steep 142 

slopes (Fig. 1). Kerala receives most of the annual precipitation due to southwest monsoonal winds 143 

during July-September, receiving more than about 3000 mm precipitation annually. The windward 144 

slopes of the Western Ghats receive heavy precipitation leading to a high risk of flooding (Simon and 145 

Mohankumar 2004; Thomas and Prasannakumar 2016). The Kerala 2018 flood was one of the worst 146 

floods in recent history due to an extremely high precipitation event in the month of August. Between 147 

August 1 to August 19, 2018, Idukki received more than 700mm of rainfall, which is about 164% more 148 

than the normal amount of rainfall during this period (Central Water Commission 2018). 149 

The Periyar river is regulated by 13 dams, with the Idukki dam being the largest. The investigation 150 

concentrates on 6 major dams out of the 13, due to their availability in public global dam databases such 151 

as The Global Reservoir and Dam (GRanD) database (Lehner et al., 2011). The water management in the 152 

basin, especially for the Idukki dam is made challenging by the fact that the upstream reservoir, the 153 

Mullaperiyar dam, is operated by the neighboring state of Tamil Nadu, which is under a separate 154 

operating jurisdiction than Kerala’s. This jurisdictional complexity, which is common around the world, is 155 

a key justification for a satellite-based framework that provides level-playing, publicly accessible and 156 

near real-time state of reservoir for all concerned stakeholder agencies. 157 

2.2. Meteorological forecast datasets 158 

The accuracy of streamflow estimation, especially in monsoon driven regions like Kerala, depends 159 

significantly on the accuracy of the precipitation estimates used to drive the hydrological modeling. 160 



10 
 

Here, we used the recently released Climate Hazards Center InfraRed Precipitation with Stations - Global 161 

Ensemble Forecasting System (CHIRPS-GEFS) (Harrison et al. 2022) operational precipitation forecast 162 

dataset for streamflow forecasting. It is generated by combining the widely used Climate Hazards 163 

InfraRed Precipitation with Stations (CHIRPS) product (Funk et al. 2015) with the Global Ensemble 164 

Forecast System (GEFS) v12 (Zhou et al. 2022). The GEFS by itself, is a global numerical weather 165 

prediction system which operationally forecasts key atmospheric variables at an hourly temporal 166 

resolution for the globe (Zhou et al. 2022). The spatial resolution varies from 0.25° for forecasts up to a 167 

10 days lead time and 0.5° for 11-16 days lead time. Within the state of Kerala, there are three stations 168 

used for generating the CHIRPS dataset – Trivandrum, Cochin, and Kozhikode. Although none are within 169 

the Periyar basin, the closest station is located 75 kms from the Idukki reservoir. Due to the coastal 170 

location of the station, it may not be able to appropriately capture the high intensity rainfall 171 

experienced at the upper reaches of the Periyar basin, which underscores the paucity of ground data 172 

within the basin and the necessity for more accurate satellite based precipitation estimates. However, 173 

such numerical weather predictions based meteorological forecasts can have systemic biases, especially 174 

at higher lead times, which can lead to higher uncertainties in streamflow predictions, necessitating 175 

post-processing bias correction of the precipitation products (Wood et al. 2004; Yang et al. 2020). 176 

Furthermore, the low spatial resolution of the GEFS precipitation forecasts at 0.25-0.5o (~25-50 km) is 177 

limited in representing the smaller scale precipitation features that control the rainfall-runoff processes 178 

in mountainous basins.  179 
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Using a quantile-quantile matching algorithm, the observed historical CHIRPS precipitation dataset is 180 

used to remove systemic biases in GEFS precipitation forecast. It is then statistically downscaled to 5km 181 

leading to the GEFS-CHIRPS forecast data product (Harrison et al. 2022). The other key meteorological 182 

variables for streamflow estimation, such as the minimum and maximum temperature, wind speed and 183 

wind direction are derived from the Global Forecasting System (GFS). The core global model of GEFS-184 

CHIRPS, the GFS, is a widely used operational global weather forecast model with a lead time of up to 16 185 

days, producing forecasts at an hourly (for the first 120 hours of forecast) to 3-hourly (for the rest of the 186 

duration of forecast) temporal resolution and at a spatial resolution of 0.25°. 187 

2.3. Reservoir operations and streamflow datasets 188 

The hindcast streamflow estimates for all the six reservoirs were first estimated using the RAT 3.0 189 

software package, driven by the Variable Infiltration Capacity (VIC) hydrological model (Liang et al. 190 

1994). The model is forced using the GPM-IMERG run (Huffman et al. 2020; Precipitation Processing 191 

System (PPS) 2022) precipitation product, and temperature and wind speed data from NOAA CPC Global 192 

Temperatures and NCEP-Reanalysis respectively. The timeliness of the “hindcast” estimates of 193 

streamflow are limited by the availability of recorded  temperature and wind speed, which are available 194 

usually at a lag of 2-3 days. We also “nowcast” the streamflow using GPM-IMERG precipitation, 195 

specifically, the IMERG-Late product and forecasted temperature and wind speed from the Global 196 

Forecasting System (GFS) when hindcast data is unavailable. Finally, we also “forecast” the incoming 197 

streamflow into the reservoir using the CHIRPS-GEFS precipitation forecast and the GFS forecasted 198 
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meteorology. In-situ streamflow observations were obtained, when available, from the local stakeholder 199 

agencies for validation of the streamflow nowcast and forecast. 200 

Earlier, Biswas et al. (2021) used long term satellite observations of reservoir surface areas to infer the 201 

likely operation rule curves of the reservoirs. These operation rule curves, relating the storage of the 202 

reservoirs for a given month as a fraction of the maximum storage capacity, were used to explore a 203 

range of actionable scenarios for dam operators that could have potentially minimized downstream 204 

flood risk (described in greater detail in section 3.2). 205 

3. Methodology 206 

3.1. Integration in RAT 3.0 and Forecasting Inflow and Evaporation 207 

The developed forecasting module is designed for integration in the RAT 3.0 software package with 208 

minimal changes to the existing code base. The RAT works on the basis of mass balance at the reservoir 209 

where inflow, storage change and evaporative losses are modeled or estimated from satellite data to 210 

estimate the likely outflow (Fig. 2). Here the outflow is an aggregation of reservoir release longitudinally 211 

along the river and lateral diversion via irrigation or water supply canals. For more detailed information 212 

on the development and theory behind RAT, the reader should refer to Biswas et al. (2021), Das et al. 213 

(2022), and Minocha et al. (2023). 214 

The RAT framework has a total of 14 distinct modular steps that can be run to generate various reservoir 215 

operations monitoring datasets (see http://www.ratdosc.io for details). Step 1-3 of RAT 3.0 download 216 

http://www.ratdosc.io/
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and process nowcast meteorological observations by satellites – scaling, aligning and clipping to the 217 

region of interest in the process, finally generating forcing inputs for the MetSim (Bennett et al. 2020) 218 

meteorological disaggregation model, used in the subsequent steps. The proposed forecasting module 219 

replicates these steps in essence, producing the forcing inputs for the MetSim model, but uses forecast 220 

meteorological inputs instead of nowcast observations. Using the processed meteorological forecast 221 

data, steps 3-8 of RAT 3.0 are run, which uses the MetSim, VIC and the VIC Routing (Lohmann et al. 222 

1996) models to model the streamflow forecast estimates at each reservoir. Step 13 of RAT 3.0 is then 223 

used to obtain the forecasted evaporation and the inflow to each reservoir (see Minocha et al., 2023 or 224 

https://ratdocs.io). The methodology for obtaining forecasted inflow, evaporation and release under 225 

different scenarios is described pictorially in Fig. 2.  226 

The RAT-forecasting module was run for all six dams in the Greater Periyar basin. The VIC model of RAT 227 

3.0 used in this study was calibrated against observed inflow for different basins across Kerala (Suresh et 228 

al., 2024). Within the Idukki basin, only the observed inflows to the Idukki reservoir were available. The 229 

R2 and NRMSE (as %) values comparing the observed and nowcast inflows for this reservoir were 0.61 230 

and 40% respectively. While the peak inflow values to the reservoir were underestimated, the trends of 231 

the rise and fall of the streamflow rate and the timing of the peak flood were predicted well. The inflow 232 

forecasts at different lead times were compared against the satellite-observations based nowcast 233 

inflow. This comparison allowed an assessment of skill of forecast against a benchmark of nowcast 234 

inflow based on satellite precipitation data. The skill of forecasted inflow was evaluated by calculating 235 
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the coefficient of determination (R2) and the Root Mean Squared Error normalized by the range (RMSE-236 

range) at different lead times. The results of this comparison are summarized in Fig. 6. 237 

To further visualize the timing and intensity of the flood peak, the forecasted inflow is also presented as 238 

a 2D grid of nowcast and forecast values in Fig. 7 (discussed more in section 4.2). The x-axis represents 239 

the date within the forecast horizon, while the y-axis represents the date of generating forecast. For any 240 

given date in the forecast horizon, the forecasted inflow at shorter lead times can be read by moving 241 

down the y-axis. For each day of forecast generation, the forecasted inflow at “X days ahead” can be 242 

read by moving right along the x-axis. A discussion on the inferences provided in greater detail in section 243 

4.2. The skill of forecasted inflow was evaluated by calculating the coefficient of determination (R2) and 244 

the Root Mean Squared Error normalized by the range (RMSE-range) at different lead times. The results 245 

of this comparison are summarized in Fig. 6 (discussed in section 4.2). 246 

3.2. Reservoir operations and outflow forecasting 247 

Forecasting reservoir operations, specifically the storage change, is fundamentally challenging because it 248 

is influenced heavily by the decisions taken by reservoir operators that one cannot predict or forecast 249 

ahead of time. Thus, any forecasting of reservoir state, such as forecast of end storage, water level or 250 

outflow, will have to be based on potential dam operating scenarios. These scenarios can be assumed 251 

from an inferred operating rule curve assuming the dam operator will likely follow based on an historical 252 

response, see Biswas et al. (2021), analogous to a ‘business as usual’ scenario. Alternatively, one can 253 

assume various dam operating scenarios in reaction to the impending flood that are each physically 254 
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plausible. Both options are explored here to shed light on the value of forecast-informed reservoir 255 

operations. 256 

The scenarios for exploring actionable reservoir operations to mitigate the flood proactively are 257 

elaborated as follows.  258 

1. Target reservoir water level - The target water level of the reservoir can be specified by the dam 259 

operator to simulate the reservoir state in the forecasting horizon, given the forecast of inflow 260 

and evaporation. This can be the maximum permissible water level of a reservoir that the dam 261 

operator feels should not be exceeded due to dam safety concerns. It can also be a water level 262 

lower than the existing water level that the dam operator wants to attain. Thus, if the target 263 

level is forecasted to be greater than the current reservoir level, the incoming flow of water is 264 

stored until the target level is reached. The stored water is then released if the target water 265 

level is estimated to be less than or equal to the current water level. If the target level is lower 266 

than the current reservoir level, then the received inflow is released in a temporally constant 267 

manner to attain the desired water level. 268 

2. Fraction of maximum reservoir storage - The storage change of the reservoir is estimated by 269 

considering a range of predefined fractions of maximum reservoir storage capacity that the dam 270 

operator deems permissible. For example, a dam operator may try to be conservative and allow 271 

little room for reservoir to change storage quickly by selecting a small fraction of maximum 272 

reservoir storage the dam is allowed to operate with. On the other hand, a dam operator may 273 
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wish to prioritize flood mitigation and allow a larger range for storage change to operate with, 274 

thereby allowing more flexibility in outflow and total storage.  275 

3. Inferred rule curve - This is operation rule curve-based dam operation where the rule curve is 276 

inferred based on historical observations of reservoir operations for the specific time when the 277 

flood took place. As mentioned earlier, this is analogous to ‘business as usual’ scenario. For 278 

example, if a certain dam is known to maintain its storage at a certain level during the first week 279 

of August based on historical average using past observations, then that is the likely level the 280 

dam operator would try to maintain the level at during the flood event. Using historical 281 

observations of the storage of the reservoir as a fraction of the maximum storage of reservoir 282 

𝑆𝑡/𝑆𝑚𝑎𝑥  for any time t, the expected storage change in the forecasting horizon (𝛥𝑆𝑡𝑁) is 283 

obtained as follows - 284 

𝛥𝑆𝑡𝑁 = (𝑆𝑡𝑁/𝑆𝑚𝑎𝑥 − 𝑆𝑡0/𝑆𝑚𝑎𝑥) × 𝑆𝑚𝑎𝑥  285 

where, t0 is the date when the forecast was generated and 𝑡𝑁 is the final date of the forecast. If 286 

the rule curve dictates a certain storage change during the forecast horizon, and if the net 287 

storage change, defined as the difference of rule curve-based storage change and forecasted 288 

inflow, is positive, then the inflow received is stored. If the net storage change is negative, then 289 

a constant release is made to meet the necessary storage change. 290 
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4. User defined storage change - The volume of storage change in the forecasting window can also 291 

be directly provided to simulate the reservoir state in the forecast horizon. Here, the dam 292 

operator may choose to input any custom storage change value (e.g. 15 million m3 as an 293 

example used in this study) to forecast the other reservoir states (outflow and water level). This 294 

way, a dam operator can assess the forecast of the reservoir state, including the water level and 295 

outflow based on the expected storage change.  296 

The outflow from the reservoir and the corresponding water surface elevation and area are calculated 297 

for all the different storage change scenarios. For example, in the first scenario where a target water 298 

level is desired, water is accumulated until the target water level is reached. For each time step in the 299 

forecast horizon, if the water level of the reservoir is forecasted to be greater than the target water 300 

level, the excess volume of water is released as the outflow (O) and the corresponding storage change is 301 

calculated as 𝛥𝑆 = 𝑂 − 𝐼 − 𝐸. Otherwise, water is stored in the reservoir with no outflow and the 302 

storage change is calculated as 𝛥𝑆 = 𝐼 − 𝐸. Here, 𝐼 is the accumulated inflow, 𝐸 is the accumulated 303 

evaporation and 𝛥𝑆 is the storage change, over the total lead time (𝑇). The change in water elevation is 304 

then calculated as ∆H = ∆S/Area. The new water surface elevation of the reservoir is updated using the 305 

change in elevation as 𝐻𝑡 = 𝐻𝑡−1 + ∆𝐻𝑡. The corresponding new surface area is then calculated using 306 

the Area-Elevation Curve (AEC). The AEC relates the elevation of the reservoir with the surface area. It 307 

can be obtained by surveying the corresponding surface area of a filled reservoir for a given elevation 308 

which is usually done before construction of the reservoir. However, in-situ AEC data may not always be 309 
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available publicly, in which case it can also be obtained using Digital Elevation Models (DEM) (Das et al. 310 

2022). We use AEC derived from the Shuttle Radar Topography Mission (SRTM) DEM in this study. 311 

Similarly, for the other reservoir operation scenarios, the volume of expected storage change during the 312 

forecast horizon is first estimated. For instance, in case of the scenario of operating within a pre-defined 313 

range of maximum storage change (expressed as a fraction of total storage) or user-defined storage 314 

change, the constant outflow rate required within the forecast window is estimated as 𝑂 =  (𝐼 − 𝐸 −315 

𝛥𝑆)/𝑇. The water surface elevation and area corresponding to the storage change of the reservoir are 316 

then calculated for each time step similar to the methodology described above. 317 

4. Results and Discussions 318 

4.1. Skill of forecast precipitation 319 

Before analyzing the skill and performance of forecasted flow, it is helpful to first analyze how the 320 

precipitation input to the RAT framework performs at forecast time scales. This analysis can help explain 321 

the ensuing skill and performance in forecasted flow as the skill of flow forecasting cannot exceed that 322 

of skill of forecasted precipitation. 323 

In Fig. 4, we show the precipitation forecasts by CHIRPS-GEFS against in-situ gauge recorded 324 

precipitation. Overall, the bias in CHIRPS-GEFS precipitation forecast is within -0.50 mm and 1.5 mm, 325 

which can be considered negligible. We also compared the IMERG satellite precipitation estimates 326 

against the precipitation at an in-situ gauge-based precipitation data product called GSOD (Global 327 
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Summary of the Day). This GSOD product is available from the National Climate Data Center (NCDC) via 328 

NOAA at: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516   329 

The specific GSOD station data were extracted for the period of 2015-2024. The average bias in the 330 

GPM-IMERG precipitation product over 10 years was negligible at 0.9 mm. This is not to say that multi-331 

sensor precipitation estimation or GEFS has universally low uncertainty in mountainous basins. Both 332 

types of precipitation estimation has endemic challenges that are not picked up well due to the paucity 333 

and decreasing density of in-situ precipitation gauges as elevation increases. Interested readers can 334 

refer to Pradhan et al. (2022). 335 

We also visually compared the GPM-IMERG in Fig. 5. The precipitation forecasts from CHIRPS-GEFS 336 

generally underestimates the intensity of the rainfall when compared to IMERG. The magnitude of the 337 

underestimation reduces at shorter lead times, but even at 1 to 3 day lead times, high intensity 338 

precipitation is often missed or underrepresented. This underestimation combined with representation 339 

of a mountainous terrain in a macroscale gridded model (VIC) is expected to compound the skill of 340 

forecasted inflow in the RAT framework for a mountainous and high precipitation region. 341 

Our findings regarding the skill of CHIRPS-GEFS as shown in Fig. 5 is not unexpected given the state of 342 

the art of global numerical weather prediction and forecasting of precipitation over highly variable and 343 

mountainous terrain. Numerical weather predictions perform well in capturing the small scale 344 

orographic effects that are the dominant cause of precipitation in mountainous terrain, especially in 345 
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South West India. In such cases, dynamic downscaling techniques are necessary for solving the fine scale 346 

microphysics from larger scale numerical weather prediction models for skillful predictions. 347 

4.2. Optimal lead time for forecasting flood timing 348 

The inflow to all the six reservoirs in the Greater Periyar basin were forecasted during the period when 349 

the flood peaked. This period was from August 10 to August 25, 2018. Lead times ranging from 1 day to 350 

15 days were explored. During the same time period, the inflow was nowcasted using satellite 351 

precipitation data. Fig. 6 compares the forecasted and nowcasted inflow at the Idukki reservoir, where 352 

the nowcasted inflow is marked as a black line. The observed inflow is shown as the orange line and 353 

forecasted inflows are marked as blue circles, with darker shades representing lower lead times. As the 354 

lead time of the forecast decreases, the magnitude of forecasted streamflow matches more closely with 355 

the magnitude of nowcast satellite based streamflow estimates from RAT. At a lead time of 1-day to 3-356 

day, both the intensity and timing of the peak flood is well predicted. Compared to the observed 357 

streamflow, both the streamflow nowcast and forecast estimates are much lower with a constant bias 358 

that could be potentially removed operationally (Fig. 6). The bias discrepancy can be explained by the 359 

extreme nature of the  precipitation event (Mishra et al. 2018), which can be challenging for both 360 

Numerical Weather Prediction models and satellite based observations to detect and estimate the 361 

magnitude over mountainous regions (Harrison et al. 2022). Even with the systematic bias between the 362 

satellite-based streamflow estimates and observed streamflow, the timing of the flood and the rate of 363 
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increase in the magnitude of the streamflow during the flood can be seen to be forecasted very well 364 

(Fig. 6). 365 

Fig. 7 visually represents the forecasted inflow at different lead times as a 2D grid. Forecasts generated 366 

on August 4 to August 12 all indicated a peak in the hydrograph with high streamflow around August 16-367 

17, coinciding with the peak of the actual flood event. Within a lead time of 2-3 days, both the 368 

magnitude and timing of the streamflow was forecasted with much certainty. Overall, forecasts with 369 

lower lead times of up to 7 days were able to better predict the timing and magnitude of the flood 370 

event. 371 

The quantitative performance metrics demonstrating the skill of forecast streamflow at different lead 372 

times are shown in Fig. 8. To generate this figure, the inflow forecasts were first generated from July 17 373 

to August 30, 2018, for 15 days beyond each date of generating forecast. For each day within the 374 

forecast period, forecasts from different lead times were grouped together. These forecasts, made by 375 

varying lead times, were treated as individual time-series. These forecast time series at varying lead 376 

times were compared against the nowcast inflow considering it as the baseline for the period when the 377 

flood peaked, 15th August to 21st August, 2018.  378 

The R2 values increase with decreasing lead times. The timing of the peak flood can be quantified at 379 

least a week in advance (Fig 8). The metrics denote the performance of forecast during the peak of the 380 

flood, from August 15 to August 21, across all the dams in the Greater Periyar basin. High R2 and low 381 

RMSE values of the forecast for all dams a week prior to the peak flood underline the ability of CHIRPS-382 

GEFS precipitation forecast to forecast floods in the mountainous regions.  383 
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The somewhat oscillating structure of the R2 in Fig. 8 can be explained to some extent by the 384 

precipitation forecast patterns generated at different lead times. For instance, in Fig 9, we can see that 385 

the forecasted precipitation for 15th August generated on 10th August to 12th August suggest that the 386 

Idukki basin would receive in excess of 100 mm rainfall, with gradual increase in intensity with 387 

decreasing lead time. However, the forecasts generated on August 12 and 14th predict a lower amount 388 

of precipitation over the basin as compared to the forecasts on previous days. Such a pattern is 389 

expected from Numerical Weather Prediction models as it tries to solve for an ever changing dynamic 390 

system that evolves rapidly over the duration of a storm. Hence the change in forecasted precipitation 391 

amount over different lead times results in a similar pattern of modeled inflow to the reservoir. 392 

4.3.  Exploring actionable reservoir operations based on forecasts and range of scenarios 393 

In this section, we explore the second objective of our study - to explore the range of actionable 394 

scenarios for dam operators that could have potentially minimized downstream flood risk of the Kerala 395 

2018 floods with this forecast-informed reservoir operations scheme of RAT. However, before moving 396 

into reservoir operation scenarios, let us remind ourselves where the state of the art is in terms of 397 

quantitative precipitation forecasting which in turn represents the upper limit of reservoir flow 398 

forecasting. For example, the actual outflow from the Idukki reservoir was in the range of 1100-1460 399 

(m3/s)  during 15-17 August, 2018 and inflow was in the range of 1440-2000 (m3/s). The actual 400 

precipitation on 15th August, 2018  reported by the Indian Meteorological Department (IMD) was in the 401 

range of 170-270 mm. Compared to the observed rainfall, the forecasted precipitation over the region 402 
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was barely above 100mm. The 2018 storm in Kerala was therefore an extreme rainfall event (~200 year 403 

return period), an event that the global numerical weather prediction modeling would be limited in 404 

capturing its finer physical features without further dynamic downscaling (see section 4.1). 405 

Downstream flood risk is defined as the additional risk posed by uncontrolled release of water from a 406 

dam when the incoming volume of water during a flood exceeds that of the flood cushion capacity of 407 

the dam. In such cases, downstream inhabitants would experience high inflows at times that do not 408 

correspond to the natural timing of a flood if the dam was not there, as common intuition would dictate. 409 

This makes such floods even more dangerous due to the unpredictability of the timing of flood for 410 

downstream inhabitants, making dissemination of information about dam releases especially important. 411 

For this, the reader should refer to the various scenarios defined in section 3.3 that a dam operator is 412 

likely to operate the dam by. Outflow scenarios are explored to reduce the flood risk by releasing water 413 

at a controlled rate, possibly lower than the rate of flow during the peak flood. 414 

To maintain the water level at a target elevation, water is first withheld or stored until the target level is 415 

reached, and then released at a rate equal to the peak inflow flow rate of the flood. This scenario lets 416 

users simulate the outflow required to maintain a target water level. For instance, a target water level of 417 

801m was simulated for the Sholayar reservoir, which is 10 m below its full water level (FWL) of 811m 418 

for dam safety. In this simulated case, water could be stored until August 19th based on the initial 419 

storage of the reservoir on August 10th (2018). 420 
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In case of storage change experienced by the reservoirs equaling to ±0.5%, ±2.5% and ±4.0% of the 421 

maximum storage capacity, the outflow from the reservoir at a constant rate is selected as a range of 422 

possible values deemed safe for downstream inhabitants. In all the simulated scenarios plotted in fig. 423 

10, the rate of outflow is lower than the peak flow rate of the flood entering the reservoir. The high 424 

volume of water incoming to the reservoir is compensated by releasing water proactively before the 425 

flood peak. The respective reservoir water levels are plotted alongside the corresponding scenarios in 426 

Fig. 10 (a and b). This range of forecasted outflows and the corresponding water levels provide a range 427 

of possible reservoir operation scenarios for the reservoir operators to consider for minimizing the 428 

impact of the flood risk downstream. 429 

The outflow from the dam based on inferred rule curve or historical reservoir operations varies on a 430 

case-by-case basis for the reservoirs. This is expected, as each dam and reservoir have unique flood 431 

routing and spillway capacity along with a unique bathymetry for storage. It simulates a baseline 432 

scenario of the forecast of reservoir states if dam operators operated the reservoirs in a ‘business as 433 

usual’ mode continuing the practice of previous years. For instance, if the Sholayar reservoir was 434 

operated according to how it had been operated historically, the water level would be higher by about 3 435 

meters on average compared to the other storage change scenarios. Similarly, the reservoir operator 436 

can also simulate the corresponding outflow required and the water level using custom storage change 437 

values to simulate the reservoir state based on the expected storage change (Fig. 10). 438 
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Based on the different reservoir operation scenarios the forecast of outflow from the reservoirs provide 439 

a range of possible forecast-informed reservoir operations scenarios to mitigate or minimize the 440 

downstream flood risk. These scenarios can help answer questions such as, (1) how much buffer time 441 

can be expected for a target water level to be reached? (2) how would the water level change for 442 

different release scenarios given the forecasted inflow? (3) compared to how the reservoirs were 443 

operated historically, how would the reservoir state differ based on the release scenarios? (4) could the 444 

reservoir operations be adapted to lower the risk posed by the flood?  445 

As discussed in the previous section, the magnitude of the flood was underestimated by both the 446 

nowcast and forecasted streamflow but only with a systematic bias that could be removed operationally 447 

if needed. Moreover, the timing and the rate of increase in streamflow throughout the week were 448 

forecasted very skillfully at a lead time of 7 days (fig. 10). Hence the outflow forecasts in Fig. 10 are 449 

representative of the expected outflow for different operation scenarios given the forecasted 450 

streamflow, rather than being the “prediction” of the outflow from the reservoirs. Such forecasting of 451 

reservation state based solely on satellite observations and publicly available GEFS-CHIRPS data has 452 

value for the vast ungauged regions of the world where in-situ data is largely inaccessible. 453 

4.4. Scalability of RAT-Forecasting: the recent August 2024 floods of Tripura and Southeastern 454 

Bangladesh 455 

We set up a similar example of forecasting reservoir inflow and scenario-based outflow for the 456 

Northeastern region of Tripura (India) and Southeastern Bangladesh, wherein the issue of flood 457 
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preparedness takes an international angle due to transboundary flow (Fig 11). During August 21-27, 458 

2024, floods that took place first in the upstream region of Tripura (in India) on the Gomti river basin, 459 

eventually travelled downstream to Bangladesh. With heavy precipitation, Southeastern Bangladesh 460 

was also flooded. The flooding and heavy precipitation in Tripura led to the opening of all gates of the 461 

Dumboor dam (India) due to it being at near full reservoir level prior to the flood. Using our RAT 462 

framework forced with satellite data and CHIRPS-GEFS, we obtained similar results and inference as we 463 

get for the 2018 floods in Kerala (see Fig. 12). Within a 3-day lead time, the intensity and timing of the 464 

peak flood is well predicted, and an indication of high inflow is obtained nearly a week prior.  Readers 465 

can now access the realtime operational system for Tripura/Bangladesh at 466 

https://depts.washington.edu/saswe/tripura and for Kerala at 467 

https://depts.washington.edu/saswe/kerala.   468 

 469 

5. Discussion and Conclusions 470 

Dams and reservoirs play an important role in mitigating risk of flooding for downstream inhabitants. 471 

However, reservoir operators often must balance the competing goals of hydropower production and 472 

flood control. This is especially challenging in mountainous regions where reservoir operations are 473 

optimized for hydropower generation, but also need to address the mitigation of fast response extreme 474 

precipitation events. Reservoir operations based on static rule curves, designed based on seasonal 475 

inflow patterns often fail to handle rapidly evolving floods driven by climate-change of extreme 476 

precipitation events that occur at low exceedance probabilities. As mentioned earlier, the 2018 floods in 477 

Kerala, an out-of-season extreme precipitation event left the reservoir operators with limited options 478 

https://depts.washington.edu/saswe/tripura
https://depts.washington.edu/saswe/kerala
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for flood mitigation. Hence, it is crucial that such events are forecast, and the forecasts applied to 479 

generate guidance for forecast-informed reservoir operations to mitigate potential damages 480 

downstream. 481 

In this study, we investigated the ability of a gauge corrected precipitation forecast product, the CHIRPS-482 

GEFS, in forecasting the inflow during the extreme precipitation event of 2018 in Kerala. We explored a 483 

range of actionable scenarios for dam operators that could potentially minimize downstream flood risk 484 

with this forecast-informed reservoir operations scheme of RAT. For the extreme flood experienced by 485 

Kerala in August 2018, the magnitude of the flood peak was not captured with sufficient accuracy. 486 

However, the timing of the flood peak and the rate of increasing flow was forecasted quite well with a 487 

week’s notice using forecasted precipitation from GEFS-CHIRPS. Moreover, the performance in 488 

forecasting the timeliness of the flood increased at shorter lead times, although the performance was 489 

found to vary from each reservoir. Our exploration of the range of actionable scenarios of reservoir 490 

operations based on inflow forecasts within the satellite-based RAT framework revealed that for most 491 

cases, the reservoir operator could have made proactive decisions related to reservoir operations to 492 

potentially mitigate the flood. 493 

The forecasting module developed for RAT and investigated in this study using the Kerala 2018 floods as 494 

a case study (and also for Northeastern region of Tripura, India and Southeastern Bangladesh) 495 

demonstrates its promise for application in similar regions and extreme precipitation environments 496 

around the world. In that spirit of empowering dam operators and managers of regulated river basins of 497 
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the world, we have made the forecast module an integral part of the RAT 3.0 software package. 498 

Interested readers should visit www.satellitedams.net and  https://github.com/UW-SASWE/RAT to 499 

access this version of RAT along with its documentation on http://ratdocs.io for implementing RAT 3.0 in 500 

forecast mode using GEFS-CHIRPS at a river basin of their interest. Given that RAT is a publicly available, 501 

open-source and open-science reservoir tracking software package (Minocha et al. 2023), it is our hope 502 

that forecast-informed reservoir operations within a satellite-based tracking framework will improve 503 

flood management in regulated river basins where in-situ data or public access to information is scarce.  504 

In closing, the key innovation to the body of knowledge in our opinion is the advancement on the use of 505 

weather forecasting for reservoir operations in developing regions of the world that are mountainous 506 

with high precipitation (shown in Fig. 13). These are the regions where satellite data are often the only 507 

viable alternative (and hence the use of RAT as the reservoir tracking tool; Minocha et al. 2023), as 508 

demonstrated through a scalable application in the Indian region of Tripura and Southeastern 509 

Bangladesh. 510 

DATA AVAILABILITY STATEMENT: 511 

All the data, except for the in-situ reservoir inflow data to the Idukki dam, used in this study are publicly 512 

accessible. Forecast precipitation as the CHIRPS-GEFS dataset was obtained from the Climate Hazards 513 

Center at UC Santa Barbara from https://chc.ucsb.edu/data/chirps-gefs. The minimum, maximum 514 

temperatures and the U- and V- components of wind are obtained from the historical archives at the 515 

Research Data Archive at the National Center for Atmospheric Research 516 

http://www.satellitedams.net/
https://github.com/UW-SASWE/RAT
http://ratdocs.io/
https://chc.ucsb.edu/data/chirps-gefs
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(https://rda.ucar.edu/datasets/ds084.1/dataaccess/). The RAT software can be installed using the conda 517 

package manager or from https://github.com/UW-SASWE/RAT. Install instructions and the 518 

documentation for RAT are available at http://ratdocs.io. The documentation for RAT-Forecasting 519 

module and the data associated with this study can also be accessed at https://rat-520 

satellitedams.readthedocs.io/en/latest/Plugins/Forecasting/. The forecasted data generated for the 521 

study is available at 522 

https://www.dropbox.com/scl/fo/9hbdmu5wbh5wowd95qdsu/ADejOG0KT2FiSnQ8yJKacXk?rlkey=w3z2523 

mk41kasx2ldx5futuifrs&dl=0. 524 
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FIGURE CAPTION LIST:  686 

 687 

Fig. 1. Map of the Greater Periyar River Basin showing the location of six study reservoirs. A pink arrow 688 

highlights the flow of water from the Mullaperiyar Dam to the Idukki Dam. An inset map to the bottom 689 

left shows the location of the Greater Periyar basin in the Indian subcontinent, including the location of 690 

precipitation measuring stations used in generation of the GEFS-CHIRPS dataset as blue stars. 691 
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 692 

Fig. 2. Flow chart illustrating the methodology for generation of inflow and reservoir outflow forecast. 693 

 694 

Fig. 3. Illustration of the conceptual model of RAT 3.0. (a) The Variable Infiltration Capacity (VIC) 5.0 695 

hydrological model is used to model the inflow to the reservoir using satellite observations derived 696 

meteorological forcings; (b) Surface area is estimated using the TMS-OS algorithm at a frequency of 1-5 697 

days using observations from multiple satellites – Sentinel-1, Sentinel-2 A/B, Landsat 8 and Landsat 9; (c) 698 
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Storage change is estimated using observed reservoir surface area and the Area-Elevation relationship of 699 

the reservoir; (d) Evaporation is computed using the Penman equation; (e) Using mass balance, outflow 700 

is estimation for the reservoirs. 701 

 702 
Fig. 4. Comparison of bias, averaged over 2017-2018 CHIRPS-GEFS precipitation forecast at Cochin, 703 

Kerala, compared to in-situ gauge measured precipitation. 704 

  705 
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 706 

Fig 5: Comparison between IMERG satellite precipitation data (which is nowcast) on the three most 707 

intense days of rainfall (14, 15 and 16th August, 2018) and precipitation forecasts for the same days by 708 

CHIRPS-GEFS at various lead times. This comparison reveals the potential skill of CHIRPS-GEFS forecast 709 

precipitation at various lead times as satellite precipitation is a nowcast (or hindcast) product. 710 

  711 
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 712 

Fig. 6. Comparison of observed inflow (Orange) with inflow modeled using satellite precipitation data 713 

using RAT to the Idukki dam (Black line) overlain with forecasted inflow (Blue circles and lines) during 714 

the flood in August 2018. Forecasts for lead times 1, 3, 5, 10 and 15 days are highlighted by joining the 715 

blue circles representing the forecast time-series. 716 

  717 
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 718 

Fig. 7. Matrix of nowcast (squares) and forecast (crosses) streamflow during the peak of the 2018 flood 719 

at the Idukki dam. The y-axis represents the date on which the forecast was generated, and the x-axis 720 

represents the date of nowcast/forecast. The lead time of forecast increases moving upwards along the 721 

y-axis and rightwards on the x-axis. The lead times associated with the forecasted streamflow generated 722 

on August 9th, are annotated along the x-axis, and the forecasted streamflow estimated for August 13th 723 

are annotated along the y-axis using numbers. The flood peak of August 17th and 18th can be seen to be 724 

forecasted with a lead time of about 7-8 days. 725 
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 726 

Fig. 8. Performance metrics, R2 and RMSE (range normalized), comparing the forecasted streamflow 727 

estimates at various lead times against nowcasted streamflow during the peak of the flood, between 728 

15th-21st August 2018. 729 

 730 
Fig 9. Precipitation forecast of 15th August generated at 1, 2, 3, and 5 day lead times. 731 

 732 
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 733 

Fig. 10a. Forecasted outflow rates based on different scenarios and their respective forecasted water 734 

levels shown for Parambikulam, Peruvarippalam, and Thunakkadavu. Here the blue line on the left panel 735 

shows the forecasted inflow generated on day August 10. The idea here is to show how the various dam 736 

operator scenarios can potentially mitigate the forecasted inflow (assuming it retained the necessary 737 

skill as already seen with up to a 7 day lead time) and attenuate the flood wave with a lower magnitude 738 

and more controlled outflow for downstream inhabitants. For dam operating scenarios refer to section 739 

3.2. 740 



47 
 

 741 

Fig. 10b. Same as Figure 7a but for reservoirs Idukki, Mullaperiyar and Sholayar. 742 
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 743 

Fig. 11. Scalability of RAT framework with a recent application in Northeastern state of Tripura and 744 

Southeastern Bangladesh to address reservoir operations and transboundary flood preparedness. 745 
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746 

 747 

Fig. 12 Inflow forecast to the Dumboor (Tripura, India) and Kaptai (Chittagong, Bangladesh) dams at 748 

various lead times (See previous figure for location of dams).  749 

  750 
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 751 

Fig 13. Map showing high precipitation and mountainous regions around the world where this study will 752 

be applicable. 753 


