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A B S T R A C T   

In light of the rapidly increasing regulation of rivers due to planned and constructed reservoirs, monitoring 
reservoir operations has become very crucial. The Reservoir Assessment Tool (RAT) framework was developed to 
monitor reservoir operations globally, using hydrological modeling and satellite observations. With feedback 
from stakeholders, improvements in the RAT framework are demonstrated in this study using the Mekong River 
Basin as an example. A novel multi-sensor reservoir area mapping technique was developed using comple
mentary strengths of optical and SAR sensors at a 1–5 day temporal resolution, allowing the quantification of 
sub-weekly reservoir operations. Additionally, the skill of radar altimeters in the RAT framework was tested 
using the Jason-3 altimeter. Using in-situ data from three Thai reservoirs in the Mekong Basin, consistent im
provements were observed as compared to the original RAT framework. A functionality for visualizing forecasted 
outflow was also added using historically inferred reservoir operations or stakeholder-driven target storage 
expectations.   

1. Introduction 

Humans have significantly changed how the world’s rivers flow by 
building dams and reservoirs at an unprecedented rate in the past couple 
of decades. Estimates suggest that about 1/6th of the total annual river 
flow is stored in reservoirs (Hanasaki et al., 2006; Mulligan et al., 2020). 
These reservoirs account for 57% of the Earth’s total surface water 
storage variability (Cooley et al., 2021) that also have a characteristi
cally different storage change pattern as compared to natural lakes 
(Ryan et al., 2020). These dams have significantly changed the seasonal 
streamflow characteristics of major rivers around the world (Cooley 
et al., 2021; Lehner et al., 2011; Zhou et al., 2016). For instance, due to 
regulation by existing reservoirs, the wet-season flow of the Mekong 
River is estimated to have reduced by 31%, while the dry-season flow 
has increased by 35% (Bonnema and Hossain, 2017; Mekong River 
Commission, 2019, 2021). 

At a global scale, 48% of freshwater in rivers are impacted by 

anthropogenic regulation due to reservoirs, which is projected to in
crease to about 93% in the future (Grill et al., 2015). The effects of this 
regulation are very apparent in the basin-wide disturbance to biodi
versity (Barbarossa et al., 2020), sediment and nutrient flux to the 
oceans (Li et al., 2021), channel morphology and land-use-land-cover 
(Fernandes et al., 2020). Information on reservoir operations is there
fore crucial to understand how streamflow regulation Drives human 
alteration of the natural aquatic environment and water resources. 
Developing this understanding requires prediction of the dynamic con
dition of the reservoir, such as inflow, outflow, active storage, storage 
change, water level and evaporative losses. Such data are usually 
measured and collected at the specific dam sites. However, barring a few 
exceptions, most data are not made publicly accessible or available, 
especially in developing nations, due to confidentiality requirements on 
grounds of national security (Plengsaeng et al., 2014) or lack of in-situ 
measurement infrastructure (Bernauer and Böhmelt, 2020; Bonnema 
and Hossain, 2017). Thus, the overwhelmingly opaque nature of dam 
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operations at most locations worldwide poses a significant challenge to 
tracking the dynamic nature of human alteration of flow by dams. 
Consequently, this hampers building a more complete understanding of 
the dam’s impact on the natural-socioeconomic systems that are 
dependent on the river basins. This also hinders our ability to improve 
existing resource management tools in an increasingly dammed and 
human-impacted river basin in the future. 

In dammed river basins, an increasing amount of a river’s down
stream streamflow is affected by upstream regulation. It is therefore 
crucial for these downstream reservoir operators to understand how the 
upstream reservoirs are operated, so that improved operating strategies 
can be adapted for irrigation, hydropower, and flood/drought man
agement, while also maintaining environmental flow requirements 
(Bonnema et al., 2016). This naturally calls for cooperation and a need 
for open data-sharing among all dam operating and stakeholder agencies 
in a basin. However, this is difficult to establish and maintain in trans
boundary river basins (Bakker, 2009). Effective data sharing between 
countries requires a combination of various favorable factors, both 
technological and political (Balthrop and Hossain, 2010; Eldardiry and 
Hossain, 2021b). These include, but are not limited to, streamlined 
data-sharing mechanisms, transboundary water treaties for data sharing 
that facilitate reservoir operations and a willingness for all riparian 
countries to adopt a shared vision of development. Even in basins that 
are within a single country, such cooperation and data sharing can be a 
challenge. A prime example of which is the Cauvery basin dispute be
tween the Indian states of Karnataka and Tamil Nadu (Khandekar and 
Srinivasan, 2021). 

In this increasingly regulated and impounded river basin scenario of 
the near future, satellite remote sensing-based approaches can help fill 
the current gaps in data-availability and data access on reservoir oper
ations and streamflow regulation. For instance, Global Reservoirs and 
Lakes Monitor (G-REALM; https://ipad.fas.usda.gov/cropexplorer/ 
global_reservoir/) is one such satellite observation enabled product 
that reports the water level of select lakes and reservoirs based on sat
ellite radar altimetry (Birkett et al., 2018). While such information on 
the water level of lakes and reservoirs can help understand the state of 
these water storage systems, additional information such as storage 
change, outflow from reservoirs, and reservoir operation patterns that 
are critical to understanding the human impact, are not derived. A 
similar and more regionalized system for monitoring reservoirs is the 
recent Mekong Dam Monitor created by the Stimson Center (https:// 
www.stimson.org/project/mekong-dam-monitor/). While the breadth 
of information provided by Mekong Dam Monitor is extensive, to the 
best of our knowledge, the system is not open-source where all the 
source code and inputs are made publicly available to ensure repro
ducibility and scalability to other regions of the world. 

In response to current limitations of the existing state of the art on 
reservoir monitoring systems, Biswas et al. (2021) introduced an 
open-source and reproducible tool based on satellite observations hy
drological modeling-based called the Reservoir Assessment Tool (RAT; 
https://depts.washington.edu/saswe/rat_beta/). It is currently opera
tional for a total of 1598 reservoirs around the world with scripts and 
data processing methodologies made fully public. Since it is the first 
version (1.0) of such a global and reproducible tool, we refer to it as RAT 
1.0 in the rest of the manuscript. RAT 1.0 reports the daily modeled 
reservoir inflow, monthly surface area variation, storage change and 
outflow, and the inferred rule curve for South America, Africa, South 
and Southeast Asia. The open-source nature of the project encourages 
stakeholders to freely use the framework and add features needed by 
stakeholders. For example, RAT 1.0 framework has been successfully 
used to develop a RAT for simultaneous management of water quantity 
and water quality (RAT-WQ2) by several stakeholder agencies, such as 
by the Center for Water Resources Development and Management 
(CWRDM) of Kerala (India) (http://depts.washington.edu/sasw 
e/kerala/), and for the Nile River Basin (NiBRAS; https://depts.wash 
ington.edu/saswe/nibras/; Eldardiry and Hossain, 2019; Eldardiry and 

Hossain, 2021a). 
In this paper, we propose the second version (2.0) of the RAT 

framework, with various improvements in accuracy and functionality, 
based on continuous feedback received from stakeholders of the Mekong 
basin. This second iteration of improvement of the RAT framework is 
hereafter referred to as RAT 2.0 in the manuscript. Our motivation for 
developing RAT 2.0 is driven by the need for continuous improvement 
based on the increasing availability of satellite remote sensing data from 
multiple sensors, hydrologic model improvements and innovations in 
information technology (IT). Another goal for the development of RAT 
2.0 is the need to improve the accuracy of prediction of reservoir’s dy
namic state to a level that triggers more actionable decision making for 
stakeholder agencies such as the Member Countries of the Mekong River 
Commission (MRC), including Cambodia, Lao PDR, Thailand and Viet 
Nam. Continuous feedback was obtained via close deliberations with the 
MRC during a year-long period spanning March 2021–May 2022. These 
deliberations were based on the global version of RAT 1.0. Based on this 
year-long feedback from the MRC and the need for continuous 
improvement, the design goals of RAT 2.0 that drove the current study 
were as follows:  

1. Improve the temporal resolution of the reservoir’s dynamic state 
prediction from monthly, to weekly to sub-weekly allowing a more 
granular tracking of upstream reservoir operations.  

2. Improve accuracy of reservoir storage change and outflow in RAT 
2.0, by leveraging advanced water classification methods and a 
larger suite of satellite remote sensing data.  

3. Provide outflow forecasting functionality in RAT 2.0 based on user- 
provided operating scenarios to allow stakeholders more lead time in 
responding to likely impacts of upstream dam operation. 

The key research question we aim to address in this paper is – how 
skillfully can a reservoir’s dynamic state, specifically, the surface area 
change, storage change, and outflow, be predicted using a more compre
hensive suite of satellite sensors, methodological advances, and an improved 
information technology framework? Our hope with the continued 
improvement of the RAT from RAT 1.0 to RAT 2.0, is to empower 
stakeholder agencies with information on reservoir operations using 
publicly available satellite observations that can improve decision- 
making for water resources management, while honoring the goals of 
open-access, reproducibility, and scalability. The paper is organized as 
follows: Section 2 provides a short description of the study region of the 
Mekong River Basin over which where RAT 2.0 was developed and 
tested. Section 3 describes the data, models and methods used in RAT 
2.0 that comprise key improvements to RAT 1.0. Section 4 discusses 
results, showcasing the overall skill of prediction of reservoirs’ dynamic 
state. Finally, Section 5 summarizes the key finding, limitations, and 
recommendations for further work. 

2. Study region: The Mekong River Basin 

Situated in South East Asia, the Mekong River is one of Asia’s longest 
transboundary river systems, with a length of 4763 km. It passes through 
a total of six countries – China, Myanmar, Thailand, Lao PDR, Cambodia 
and Viet Nam, draining about 810,000 km2 (Mekong River Commission, 
2021). The seasonal cycle of the basin is driven by a tropical monsoonal 
climatic system, with the basin receiving most of the precipitation 
during the period of May to October (Hossain et al., 2017). 

The Mekong River has been subject to increasing flow regulation in 
the recent past by the construction of reservoirs, especially due to an 
increasing demand for food, energy, and water for sustaining the rapidly 
growing economies of the region. The effects of this increased regulation 
are also very apparent in its current flow conditions, characterized by 
reduced flow during wet seasons and higher flows during dry seasons 
(Mekong River Commission, 2019, 2021), and a decreased sediment 
load (Kondolf et al., 2018; Mekong River Commission, 2019). The 
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Fig. 1. Map of the study area, depicting the Mekong River and the reservoirs monitored in RAT 2.0. The validation reservoirs are as follows – 1: Lam Pao, 2: Ubol 
Ratana, 3: Sirindhorn. 
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Mekong River Basin also houses the Tonle Sap Lake (TSL) system, which 
experiences one-of-its-kind hydrodynamic phenomenon of annual flow 
reversal due to the monsoonal flood pulse. In addition to providing 
significant economic, cultural and nutritional value to the inhabitants of 
the TSL region, it also supports a unique ecosystem and fisheries (Arias 
et al., 2012). Further dampening of the flood pulse due to upstream flow 
regulation can lead to cessation of the flow reversal phenomenon, 
leading to significant disruption to the ecosystem that it supports 
(Pokhrel et al., 2018). 

The biodiversity supported by the Mekong River is currently cate
gorized as relatively high (Dac Tran et al., 2020), with an estimated total 
of 924 species of fish, of which 219 are considered endemic to the basin 
(Valbo-Jorgensen et al., 2009). This biodiversity and the livelihood of a 
major portion of the population that depends on it are under direct 
threat by current and planned reservoirs (Ziv et al., 2012). These issues 
are not unique to the Mekong River Basin, as major river basins all over 
the developing world are facing similar problems due to increasing 
regulation through reservoirs. The Mekong River Basin may therefore be 
considered a microcosm of what is already happening or likely to 
happen to relatively undammed river basins of the developing world. 
Hence, lessons learned for the Mekong River Basin on reservoir opera
tions monitoring using satellite data are expected to be relevant to other 
regions of the world. While the RAT 2.0 is developed using Mekong as an 
example, the usefulness and scalability of the new framework is there
fore global. 

The portion of the Mekong River’s basin lying in the 4 downstream 
countries – Thailand, Lao PDR, Cambodia and Viet Nam – constitute the 
Lower Mekong Basin (LMB), while the upstream sub-basin in China and 
Myanmar is referred to as the Upper Mekong Basin (UMB). Established 
in 1995 by the LMB countries based on the principles of Integrated 
Water Resources Management (IWRM), the MRC is an intergovern
mental organization that provides a platform for basin-wide dialogue 
and cooperation among the riparian countries of the Mekong River, 

especially the LMB. Apart from providing an advocacy platform for the 
riparian countries, MRC also provides technical assistance and strategic 
advice to the member countries on sustainable development of the food, 
energy and water nexus. The MRC has been instrumental in providing 
feedback on the problems faced by downstream stakeholders and the 
solutions necessary for addressing them. 

A total of 36 reservoirs of the Mekong River Basin are currently 
monitored in RAT 2.0. These reservoirs were initially selected from the 
Global Reservoir and Dam (GranD) database (Lehner et al., 2011). Three 
additional reservoirs were added for monitoring that were not in the 
GranD database based on the feedback obtained from the stakeholder 
agency. Location of all of the reservoirs is denoted in green in Fig. 1. 
Three Thai reservoirs out of these 36 reservoirs, Sirindhorn, Ubol Ratana 
and Lam Pao were selected for validation of the RAT 2.0 framework. 

3. Data and methods 

3.1. Datasets 

Publicly available data from a large array of currently operational 
remote sensing satellites, such as Landsat 8, Sentinel 1 and 2 make it 
possible to measure the reservoir surface area changes at a high tem
poral frequency. Highly accurate water level measurements at a 10-day 
temporal resolution can be made using Jason-3. RAT 2.0 improves both 
accuracy and temporal resolution of water area/level estimates using an 
ensemble of satellite sensors – Synthetic Aperture Radar (SAR) based 
Sentinel-1, Multispectral imaging-based Landsat-8 and Sentinel-2 A/B, 
and Radar altimetry-based JASON-3. A detailed discussion on the sur
face area estimation can be found in section 3.2.4. The reservoir surface 
area and water level elevation were estimated using an ensemble of 
sensors summarized in Table 1. 

The in-situ area-elevation curve was also obtained from the Elec
tricity Generating Authority of Thailand (EGAT, 2019). In-situ data on 
water fluxes – inflow, active storage, and outflow were obtained from 
the Royal Irrigation Department, Thailand (http://app.rid.go.th:88/r 
eservoir/; RID, 2022). The data was obtained for three reservoirs in 
North-Eastern Thailand – Sirindhorn, Lam Pao and Ubol Ratana – for 
validation of the estimated fluxes. 

Forecasted meteorological conditions were also obtained from the 
Global Forecasting System (GFS) (NCEP/NWS/NOAA/U.S. Department 
of Commerce, 2015) dataset to force the hydrological model to generate 
forecasted inflow in the reservoirs. The forecasted inflow was then used 
in conjunction with the inferred reservoir rule curve from Biswas et al. 
(2021) to estimate the forecasted outflow. A detailed discussion on the 
outflow forecasting component is provided in section 3.2.6. 

3.2. Methods 

3.2.1. RAT 2.0 model setup 
The underlying core assumptions and design of the RAT 2.0 frame

work is similar to the original RAT 1.0 described in Biswas et al. (2021). 
The RAT framework comprises two main modules – (i) the hydrological 
modeling component, which provides the modeled inflow to reservoirs, 
and (ii) the satellite remote-sensing based reservoir observation 
component, which provides information on the changing reservoir state. 
The modular design of the framework allows RAT 2.0 to be model 
agnostic, and input data for any part of the components can be replaced 
easily with alternate options as necessary. 

The dynamic state of the reservoir is modeled using the modeled 
fluxes to the reservoir and observed change in reservoir. At each reser
voir, an assumption of conservation of mass is made – 

O= I − E − ΔS (1)  

where, O is the outflow from the reservoir, I is the inflow to the reser
voir, E is the evaporation from the reservoir, and ΔS is the storage 

Table 1 
Summary of satellite sensors used in RAT 2.0  

Sensor Spatial 
Resolution 

Temporal Resolution 
(revisit period) 

Sensor Type 

Landsat-8 MSI 
(Surface Area) 

30 m 16 Days Optical 

Sentinel-2 A/B 
MSI (Surface 
Area) 

10–20 m 10 Days for a single 
satellite (~5 Days for two 
satellites) 

Optical 

Sentinel-1 C-band 
SAR (Surface 
Area) 

10 m 10 Days Synthetic 
Aperture Radar 
(SAR) 

JASON-3 (Water 
Level) 

~300 m 10 Days Radar Altimetry  

Table 2 
Summary of improvements introduced in RAT 2.0 as compared to RAT 1.0.   

RAT 1.0 RAT 2.0 

Hydrological model 
rowhead 

VIC 4.2. 
d (sequential 
computing) 

MetSim + VIC 5 (parallel 
computing) 

Evaporation rowhead Obtained from VIC 
4.2.d 

Explicitly modeled using 
Penman Combination method 

Satellite Sensors used to 
estimate Surface Area 
rowhead 

Landsat 7, Landsat 
8 

Sentinel 1, Sentinel 2, Landsat 
8 (TMS-OS algorithm), Jason-3 
(Altimeter) 

Surface Area, ΔS and 
Outflow temporal 
frequency rowhead 

30 days 1–5 days 

Area-Elevation Curve 
rowhead 

SRTM derived In-situ if available, otherwise 
SRTM derived 

Outflow Forecasting 
rowhead 

Not performed Performed using GFS and 
historical/expected ΔS  
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change of the reservoir (Fig. 2 (a)). Ground seepage and precipitation on 
the reservoir are assumed to be negligible components of the reservoir 
mass balance. The Inflow is modeled using the Variable Infiltration 
Capacity – 5 (VIC 5) model (Hamman et al., 2018), but it can be swapped 
with any other hydrologic model. It must be noted here that the reported 
outflow from the reservoir in equation (1) is a combination of released 
water from the reservoir and all the other losses, such as lateral di
versions, groundwater seepage losses and consumptive uses. Even 
though it would be much more meaningful for stakeholders to model the 
actual downstream releases from the dam via the spillway and pen
stocks, due to the current limitations of data sources, partitioning the 
outflow into its constituent fluxes such as lateral outflow, spilled flow 
and penstock flow, is not trivial. This limitation of a mass balance-based 
reservoir modeling schema has to be considered by stakeholders when 
using the outflow estimated by the RAT framework. 

The storage change (ΔS) of the reservoir is estimated by assuming a 
trapezoidal bathymetry of the reservoir. 

ΔS=
At− 1 + At

2
× (ht − ht− 1) (2) 

Here, ΔS refers to the total volumetric storage change, At and At− 1 

refer to the observed surface areas from satellite remote sensing. The ht 

and ht− 1 are the water levels associated with the surface areas for time t 
and t − 1 (Fig. 2 (b)). The h and A values, estimated from satellite data, 
are related to each other through the Area Elevation Curve (AEC) rela
tionship. This allows for storage change estimations using either two 
successive satellite-based surface area observations, or two successive 
satellite altimeter-based water level elevation estimates. 

The AEC relationship of each reservoir was calculated using the 
SRTM 1-Arc Second (30 m resolution) Global Digital Elevation Model 
(DEM) (Earth Resources Observation And Science Center, 2017). The 
SRTM DEM was generated using SAR technology, which is limited in its 
ability to penetrate water surfaces to obtain the bathymetric elevation 
information. This means that the directly observable bathymetry is 
limited to above the water elevation that existed during SRTM overpass. 
To address the issue of missing bathymetry below the water level, we 
generated the AEC by a combination of additional observations from 
other satellite sensors and extrapolation. The AEC generation method
ology is further described in Biswas et al. (2021), which extrapolates the 
AEC below the water surface using a fitted power law curve. Given the 
modular nature of RAT 2.0, topographical survey-based AEC was also 
used when available to understand the impact of AEC quality on the 

prediction of reservoir outflow. 

3.2.2. Hydrological modeling: VIC-5 and MetSim 
The RAT 2.0 framework is designed to be hydrological model 

agnostic, and hence users can use their preferred hydrologic model if 
needed. The current hydrological model used in RAT 2.0 during devel
opment is VIC 5 (Hamman et al., 2021). This model has a number of 
improvements compared to VIC 4.2.d (Hamman and Nijssen, 2016) 
which was used in RAT 1.0. A discussion on the improvements can be 
found in Hamman et al. (2018). 

The meteorological simulation and forcing disaggregation are 
decoupled from the hydrological modeling routines in VIC 5, and are 
packaged as a separate model – MetSim model (Bennett et al., 2020). 
MetSim was used to perform the meteorological simulation at a 6-h 
timestep using (i) the daily minimum and maximum temperatures, (ii) 
daily precipitation, and (iii) wind speed, as inputs. These meteorological 
forcings are then disaggregated to – (i) average air temperature, (ii) total 
precipitation, (iii) pressure, (iv) incoming shortwave radiation, (v) 
incoming longwave radiation, (vi) vapor pressure, and (vii) wind speed. 

Using the disaggregated forcings obtained from MetSim, VIC 5 was 
run at 0.0625◦ grid resolution for the Mekong River Basin. The model is 
run in parallel computing mode, exploiting the native support for the 
Message Passing Interface (MPI) standard, resulting in drastic im
provements to performance. The VIC Routing model (Lohmann et al., 
1998) was used to perform streamflow routing for the basin. Dominant 
River Tracing (DRT) based flow directions at 0.0625◦ spatial resolution 
by Wu et al. (2011) were used in the routing model. 

In the current scheme of RAT 2.0, an explicit representation of inflow 
regulation by upstream reservoir was not performed. The inflow regu
lation was omitted in the current scheme for two reasons – (a) most of 
the reservoirs (21 out of 36) studied in this study are situated in separate 
tributaries of the Mekong river and lack upstream reservoirs; (b) even in 
the few cases (15 out of 36) when upstream reservoirs are present on the 
same stream, they are situated several hundreds of kilometers away. Due 
to these reasons, we believe inflow regulation by upstream reservoirs 
will have a negligible effect on the downstream reservoirs in the 
currently modeled reservoirs of the Mekong. The overall higher per
formance metrics for the three validation reservoirs of RAT 2.0 over RAT 
1.0 also underscore that inflow regulation has a negligible effect in these 
reservoirs, and RAT 2.0 is still able to produce more accurate pre
dictions. However, we recognize that to improve the global utility of 

Fig. 2. (a) Conceptual model of the RAT 2.0 framework; (b) Illustration depicting the storage change estimation using satellite observations of surface area and the 
Area Elevation Curve (AEC). 
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RAT 2.0, upstream regulation will have to be actively modeled, which 
we hope to carry out in a future iteration of improvement of the RAT 
framework. 

3.2.3. Evaporation – penman equation 
In contrast to RAT 1.0, where the modeled Evaporation from the VIC 

hydrological model was used, the evaporation in RAT 2.0 is modeled 
explicitly using the Penman Equation. Also known as the combination 
equation, the Penman equation for free water surface (Penman, 1948; 
Van Bavel, 1966) is defined as follows – 

E =
Δ(RN + G) + KEγ(ρwλv)va

(
e*

a − ea
)

(ρwλv)(Δ + γ)
(3)  

where, E is the evaporation; Δ is the slope of the saturation vapor 
pressure – temperature relation; RN is the net incoming radiation; G is 
the ground heat flux, which can be assumed to be 0 for daily calcula
tions; KE is the mass transfer coefficient, see (Dingman, 2015, p. 259; 
Harbeck, 1962), γ is the psychrometric constant; ρw is the water density; 
λv is the latent heat of vaporization; va is the wind speed; e*

a and ea are the 
saturation and actual vapor pressure for the air temperature. This 
volumetric evaporative loss [L3 T− 1] was estimated by multiplying the 
evaporation [L T− 1] with the latest observed surface area of the reservoir. 

3.2.4. High-frequency surface area estimation – A Tiered Multi-Sensor 
(TMS) approach 

High temporal resolution of the storage change and outflow esti
mates is crucial for stakeholders to understand weekly to sub-weekly 
reservoir operations of upstream reservoirs. RAT 1.0 quantified the 
reservoir surface area at a monthly resolution by mosaicking Landsat 
scenes. The advantage of this approach is that mosaicking of multiple 
Landsat scenes helps address the effect of cloud cover that can cause a 
loss of accuracy in the reservoir surface area estimation. The disad
vantage of this approach, however, is the inability to quantify any sub- 
monthly reservoir operations. 

Hence, to address the need for modeling sub-monthly reservoir op
erations, a novel multi-sensor surface area estimation algorithm with a 
tiered self-correction process was developed. This method takes 
advantage of the strengths of both optical and SAR sensors in a team
work fashion. Optical sensors can very accurately estimate the water 
area (Cordeiro et al., 2021), but they can be highly limited by the 
presence of clouds. They also can be uncertain around dendritic reser
voir shorelines if the perimeter is significantly larger than the nominal 
surface area (Biswas et al., 2021). On the other hand, SAR can penetrate 
clouds and is hence not affected by the presence of clouds. However, 
SAR backscatter threshold-based water extent estimation methods are 
highly sensitive to the choice of the chosen threshold, and have a ten
dency to underestimate the surface areas in inundated vegetation 
(Ahmad et al., 2020). This method combines the high accuracy of optical 
sensors with the cloud penetrating property of SAR sensors. This method 
is referred to as TMS-OS (Tiered Multi-Sensor approach – Optical, SAR, 

pronounced as Teams-OS) in the rest of the manuscript. 
The first module processes Sentinel-2 and Landsat-8 scenes in GEE to 

obtain the reservoir surface area using recommendations and findings 
from Cordeiro et al. (2021). The Region of Interest (ROI) was first 
delineated by taking a buffer around the reservoir boundary. The buffer 
distance was taken as 500 m by default, but is user configurable. The 
Sentinel-2 L2A – Surface Reflectance overlapping the ROI was scaled, 
and clouds were masked using the Scenes Classification Map (SCM) band 
in the preprocessing stage. Landsat-8 L2 Collection 2, Tier 1 – Surface 
Reflectance scenes overlapping the ROI were also identified, and clouds 
were masked using its pixel quality bitmask band (QA_PIXEL). The 
scenes with more than 90% cloud cover over the ROI were filtered out 
due to extreme cloud cover conditions, and no further processing was 
performed. 

The cascade simple k-means clustering algorithm (Google, 2022) was 
used to perform unsupervised classification on a subset of pixels sampled 
from cloud-masked scenes. The best value for k was chosen based on the 
Calinski and Harabasz (1974) criterion. The cluster with the highest 
Multiband Water Index (MBWI) (Wang et al., 2018) was then classified 
as the cluster of water pixels. This cascade k-means model was then used 
to classify the entire scene into water and non-water pixels. The 
Normalized Difference Water Index (NDWI) and B12 (2.185 − 2.202 μm) 
bands were selected for Sentinel-2, and the NDWI, Modified Normalized 
Difference Water Index (MNDWI) and B7 (2.107 − 2.294 μm) bands 
were selected for Landsat-8 as features for training the clustering model. 
These features were chosen after assessing the relative performance of a 
combination of various features (Cordeiro et al., 2021). 

After classifying the unmasked pixels as water or non-water, the 
Zhao and Gao (2018) method of classifying masked pixels as 
water/non-water based on historical water probability (Pekel et al., 
2016) was employed. The water classification and cloud mask correction 
components were both implemented in GEE, resulting in minimal 
on-premise computing requirements. The resulting reservoir water area 
time-series of 16 and 5-day temporal resolutions from Landsat-8 and 
Sentinel-2, respectively, were combined to obtain a time-series of 
1–5-day frequency (AOptical). 

Even after employing skillful unsupervised clustering method for 
classifying water and correcting for cloud-cover related artifacts, the 
time-series can still have unrealistic drop or gain in surface area esti
mates. This can happen for several reasons, especially owing to complete 
automation of the processing pipeline – such as sub-optimal choice of K 
by the Calinski and Harabasz (1974) criterion, or inability of the Zhao 
and Gao (2018) algorithm to completely filter out cloud related artifacts. 
Since SAR can penetrate clouds, a reasonable assumption was made that 
Sentinel-1 will be able to accurately quantify the trends of reservoir 
surface area correctly as increasing or decreasing even if there is 
quantitative mis-match from ground observations. Hence, further 
filtering and a novel trend-based correction using Sentinel-1 (SAR) was 
applied to the optically derived surface area time-series. 

In the first tier of filtering, the areas reported by optical sensors are 
compared against Sentinel-1 after applying a bias-correction step. The 

Fig. 3. Illustration depicting calculation of apparent 
bias using dummy data. (a) Depiction of calculation 
of deviation between AOptical and ASAR

* . The deviation 
between these time-series were used to estimate the 
apparent bias of ASAR

* . (b) The distribution of the 
deviations between the two time-series (dummy data, 
for illustrative purposes). Since the reported surface 
areas can have unusually high deviations during 
challenging conditions (outliers) – seen at the tail 
ends of the distribution, a standard deviation 
threshold-based filtering was performed to discard 
these outliers. The median of the retained deviation 
values was then calculated, which was defined as the 

apparent bias.   
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Fig. 4. Flow chart describing the TMS-OS algorithm. (a) Reservoir surface area estimation using unsupervised clustering (Cordeiro et al., 2021) and cloud-cover 
correction (Zhao and Gao, 2018); (b) SAR trend based filtering and correction of reservoir surface area time series. The blue and green shaded regions indicate if 
the processing is done in the GEE cloud or locally, respectively. 

Fig. 5. Flowchart illustrating outflow forecasting functionality of RAT 2.0.  
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Fig. 6. Average monthly evaporative losses compared to average monthly inflow at selected reservoirs in the Mekong River Basin. The suffixes denote the country 
where the reservoirs are located – CA: Cambodia, CN: China, LA: Lao PDR, TH: Thailand, and VN: Viet Nam. 

Fig. 7. Illustration of progressive tiers of filtering and 
correction in TMS-OS for the Lam Pao reservoir, 
Thailand. (a) 1–5 Day optically derived reservoir 
surface area time-series using clustering based clas
sification and Zhao and Gao (2018) cloud-correction. 
(b) Filtering 1: Filtering based on deviation from bias 
corrected SAR surface areas. (c) Filtering 2: Filtering 
based on deviation from SAR surface area trends. (d) 
1–5 Day corrected surface area time-series obtained 
by back-calculation of filtered data points using SAR 
surface area trends.   
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reservoir surface area time-series (ASAR) was first obtained by applying 
backscatter thresholding method described in Ahmad et al. (2020) on 
Sentinel-1 SAR GRD: C-band data in GEE. The ASAR was linearly inter
polated to the frequency of AOptical, referred to as ASAR

* in the manuscript. 

The deviations between the time-series were defined as the difference in 
reported areas by both the sensors - deviations = AOptical − ASAR

* , 
obtaining a distribution of the deviations. The apparent bias between 
both the time-series can be obtained by taking the median of the dis
tribution of deviations, if there were no outliers. However, since the 
AOptical time-series can contain outlier values due to challenging sce
narios as described above which can skew the estimated median, a 
further filtering step was performed using a standard deviation (σ) 
threshold. Using a trial-and-error method, a threshold value of ±2σ was 
found to be skillful in filtering out these outliers, by discarding deviation 
values outside the ±2σ range. Finally, the apparent bias (bias) was 
calculated as the median deviation of this filtered distribution. This 
filtration step and calculation of bias is illustrated pictorially in Fig. 3 
using dummy data. 

The normalized deviations were then calculated as: norm.

deviations = deviations − bias. Data points were filtered if the normalized 
deviation was greater than a defined threshold value. Using a trial-and- 
error method, a threshold value of ~5% of the nominal surface area of 
the reservoir was found to be skillful at filtering out physically unreal
istic surface areas. 

The normalized deviations were then calculated as: norm.

deviations = deviations − bias. Data points were filtered if the normalized 
deviation was greater than a defined threshold value. Using a trial-and- 
error method, a threshold value of ~5% of the nominal surface area of 
the reservoir was found to be skillful at filtering out physically unreal
istic surface areas. 

A second tier of filtering was applied to the dataset by comparing the 
reservoir water area change trends estimated by optical and SAR sen
sors. Data points were filtered out if the difference in trends was greater 

Fig. 8. Comparison of modeled storage change using surface area observations obtained using the TMS-OS methodology with observed storage change for Lam 
Pao, Thailand. 

Table 3 
Statistics comparing storage change modeled by RAT 2.0-TMS-OS (1–5 days), 
RAT 2.0-Altimeter (10 days), and RAT 1.0 (monthly) with observed storage 
change for the time period 2019–2021. Acronyms of performance metrics used - 
KGE: Kling-Gupta Efficiency (Gupta et al., 2009); RMSE: Root Mean Squared 
Error; MAE: Mean Absolute Error.   

Metric RAT 2.0 (TMS- 
OS) 

RAT 2.0 
(Altimetry) 

RAT 
1.0 

Sirindhorn Correlation 0.61 0.85 0.33 
KGE 0.41 0.68 − 2.4 
Normalized 
RMSE 

8.3% 6.5% 15.8% 

Normalized 
MAE 

5.1% 5.0% 9.7% 

Lam Pao Correlation 0.91 0.80 0.71 
KGE 0.58 − 0.03 − 0.63 
Normalized 
RMSE 

3.4% 8.2% 13.8% 

Normalized 
MAE 

2.1% 5.6% 8.6% 

Ubol 
Ratana 

Correlation 0.78 – 0.74 
KGE − 0.27 – 0.12 
Normalized 
RMSE 

9.8% – 16.4% 

Normalized 
MAE 

4.9% – 10.6%  

Fig. 9. Comparison of modeled storage change using altimeter measurements of reservoir water level with observed storage change for Lam Pao, Thailand.  
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than a defined threshold value. Using a trial-and-error method, a 
threshold value of ~5% of the nominal surface area of the reservoir was 
found to work well as the threshold value in weeding out unrealistic 
drops in AOptical. The trend is defined as follows: 

trendSAR =
ASAR

* (t2) − ASAR
*(t1)

t2 − t1
(4)  

where, t1 and t2 are dates of observation of optical sensors (1–5-day 
resolution) and ASAR

*(t1) and ASAR
*(t2) are the interpolated areas on the 

respective dates by the SAR Sentinel-1 sensor. Similarly, the trends in 
AOptical were also obtained. 

Finally, a trend-based correction step was applied to fill in the 
filtered data points using the apparent trend in surface area change 
estimated by the SAR sensor, trendSAR. This step assumes that, even if 
ASAR are biased, the bias term will get cancelled out while calculating 
trendSAR. For each point that was filtered out in the tiered filtering steps, 
the data was filled by estimating the area using trendSAR as follows – 

A′

(t2) =A(t1) +
(
trendSAR ×(t2 − t1)

)
(5)  

where, t2 is the date of observation of a data point that was filtered out, 
and t1 is the previous date of observation. A′

(t2) is the area estimated by 
the trend correction step, and A(t2) is the area observed on t1. This 
calculation was performed iteratively for all the filtered data points to 
obtain the final 1–5 day trend-corrected reservoir surface area time- 
series. The TMS-OS algorithm is summarized in Fig. 4 

This 1–5 day frequency reservoir surface area time-series obtained 
using TMS-OS was then used to obtain the storage change using equation 
(2). Using this storage change estimate, along with the inflow from the 
hydrological model and the evaporation using the penman equation, the 
outflow was estimated using equation (1). 

3.2.5. Water level – altimetry 
The reservoir water level was also mapped using the Jason-3 radar 

altimeter, in addition to estimating the reservoir surface area using 
optical and SAR sensors. Radar altimetry-based water level estimates are 
highly accurate, however, their applicability in regional to global 
reservoir mapping is limited due to poor spatial coverage and temporal 

resolution of the sensors. Due to the sparse spatial coverage of the Jason- 
3 altimeter, we validated the use of altimeter data over two reservoirs as 
a proof of concept to show how RAT 2.0 can benefit from altimeter-type 
data on reservoir elevation when available. 

The water level (h) of reservoirs were estimated using the Okeowo 
et al. (2017), an automated clustering based method for obtaining 
in-land water surface elevations from Jason-3 observations. Although 
the Okeowo et al. (2017) method is quite robust for most cases as it uses 
a k-means clustering technique, there will always be challenging cases 
that warrant a final statistical sanity check and adjustment. For example, 
when the altimeter ground track has a short length over the reservoir or 
is near the shoreline, the reported height may be erroneous, especially if 
the reservoir shoreline contracts substantially due to reservoir draw
down or during a drought. These outliers appear as sudden jumps in the 
estimated reservoir water level, and were filtered using a standard de
viation threshold-based method. 

For an observation, the standard deviation was calculated in a rolling 
window of 4 preceding (left standard deviation - σl) and 4 following 
(right standard deviation - σr) observations. A filtration condition was 
then defined, such that, if both the left and right standard deviations 
were higher than 2 standard deviations, then the data points were 
filtered out. The threshold value of 2 standard deviations was chosen 
based on a trial-and-error basis such that most of the outliers were 
filtered out, and the authors recommend selecting a threshold value 
specific to each reservoir based on the intersection of the ground track 
with the reservoir. The rationale of the filtration step is as follows – if a 
data point is more than 2 standard deviations as compared to both 
previous and next observations, then it is very likely that the data point 
does not reflect an actual rise or decrease in the water level, and hence 
can be filtered out, and vice versa. The filtered out points were then filled 
by linearly interpolating the neighboring observations. The AEC was 
then used to obtain the corresponding surface area of the reservoir and 
the storage change was then estimated using equation (2). 

3.2.6. Outflow forecasting 
In addition to providing nowcast and historical (hindcast) estimates 

of outflow, the functionality to forecast outflow for a 15-day lead time 
was also added to RAT 2.0. The forecasted meteorological conditions – 
minimum and maximum temperature, u- and v-components of wind 
speed, and precipitation – obtained from the GFS dataset were used to 
force the VIC hydrological model to estimate the forecasted inflow to the 
reservoirs. The forecasted evaporation was also estimated using equa
tion (3) with forecasted meteorological conditions obtained from the 
GFS dataset. 

The RAT 2.0 forecasting framework provides two options of rule- 
curve based estimation of outflow for a 15-day lead time – (1) satellite 
derived rule curve from RAT 1.0, (2) user defined rule curve or time- 
varying target storage (see Fig. 5). The rule curve in RAT 1.0 is 
derived based on averaging the historical storage change patterns over a 
multi-year period for each month, and then inferring the most likely 
storage target (S) that the reservoir has tried to achieve, as a fraction of 
the maximum storage (Smax). The rule curves are then interpolated to a 
5-day frequency using linear interpolation. The interpolation is per
formed to stay consistent with the pentad frequency of hindcasted ΔS 
using the TMS-OS approach. The expected storage change is then esti
mated from the interpolated derived rule curve as follows – 

ΔST =(S0 / Smax − ST / Smax) × Smax (6)  

where ΔST is the expected storage change as a percentage of maximum 
storage based on rule curve for lead time, T. ST/Smax corresponds to the 
storage as a fraction of maximum storage at lead time T, and S0/Smax 
corresponds to the storage as a fraction of Smax for the current time-step. 
The ST can be obtained either from the inferred rule curve (option 1) or 
from a user-defined target storage at T. The Smax can be obtained either 
from in-situ data, or from dam metadata repositories, such as the GRanD 

Table 4 
Statistics comparing outflow modeled by RAT 2.0-TMS-OS (1–5 days), RAT 2.0- 
Altimeter (10 days), and RAT 1.0 (monthly) with observed outflow for the time 
period 2019–2021. Acronyms of performance metrics used - KGE: Kling-Gupta 
Efficiency (Gupta et al., 2009); RMSE: Root Mean Squared Error; MAE: Mean 
Absolute Error.   

Metric RAT 2.0 
(TMS-OS) 

RAT 2.0 
(Altimetry) 

RAT 1.0 

Sirindhorn Correlation 0.55 0.47 0.11(p-val >
0.05) 

KGE − 0.08 − 0.02 − 0.51 
Normalized 
RMSE 

11.3% 23.8% 28.6% 

Normalized 
MAE 

6.0% 17.6% 19.4% 

Lam Pao Correlation 0.38 0.27 − 0.17(p-val 
> 0.05) 

KGE − 0.3 − 0.29 − 0.63 
Normalized 
RMSE 

8.1% 16.4% 45.9% 

Normalized 
MAE 

2.7% 9.5% 33.7% 

Ubol 
Ratana 

Correlation 0.13(p-val 
> 0.05) 

– − 0.07(p-val 
> 0.05) 

KGE − 0.3 – − 0.72 
Normalized 
RMSE 

10.5% – 34.4% 

Normalized 
MAE 

4.4% – 24.2%  
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Fig. 10. Forecasted outflow using historical satellite observations derived rule curve. (a) Conceptually, the reservoir of interest can be selected using the drop-down 
menu, with Lam Pao reservoir selected for visualization in the current case. (b) Selecting Ubol Ratana from the drop-down list updates the graphic to reflect 
forecasted outflow for the reservoir. 
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database (Lehner et al., 2011). This expected storage change was used in 
the mass balance equation (1) to estimate the forecasted outflow. 

OT = IT − ΔST (7a)  

where OT , IT and ΔST are the outflow, inflow and storage change at a 
future time T. The evaporation was ignored due to the low contribution 
of the evaporation in dictating the outflow for the Mekong region. A 
discussion on the importance of evaporation for the Mekong basin is 
provided in section 4.1. 

Since reservoir operations can highly depend on the on-site decisions 
made by the dam operator, antecedent conditions, and the need to meet 
storage and distribution targets, RAT 2.0 also provides the functionality 
to directly input the expected storage change for a given lead time and 
visualize the expected outflow for the same lead time. 

3.2.7. Computational Configuration of RAT 2.0 
The RAT 2.0 was developed and tested in a CentOS 7 Linux envi

ronment, setup on a high-performance server. The server is configured 
with 2 × 8 core Intel Xeon Gold processors, each having 2 threads per 
code, equating to a total of 32 computing units. MetSim and the VIC 
hydrological model were both configured to make use of the 32 
computing units for parallel computation. The main memory of the 
system totals to 192 GB, allowing for a high ceiling of in-core processing. 

A data-processing module for pre-processing raw satellite data- 
products and transforming them into model inputs was developed. 
This module makes use of the high memory ceiling for performing data 
transformations as in-core operations to significantly improve the per
formance. While this implementation has high memory requirements, 

the implementation can be easily changed to an out-of-core processing 
schema according to constraints. 

In its current implementation, the RAT-Mekong model takes about 3 
h to run for the Mekong basin. Due to high computational requirements, 
MetSim is run only for the newly acquired data with a spin-up time of 3 
months. The VIC model is then run for the entire time period of 2000- 
current at a daily time-step to obtain basin-wide modeled runoff and 
baseflow. The VIC routing model is then used to route the modeled 
runoff and baseflow to obtain daily modeled streamflow (inflow) at the 
reservoirs. For generation of the modeled streamflow by the routing 
model, the station locations have to be defined as the coordinates in 
terms of indices of the grid array. A python script was created to perform 
the conversion from latitude-longitude values of stations to their 
respective array-index representation in the model grid. 

The remote sensing module offloads the processing to Google Earth 
Engine’s (GEE) cloud computing infrastructure, and hence has minimal 
local processing requirements. 

Currently, the RAT model is set up to run daily at a 3-day lag, to offset 
any data provider side delays and their inherent latency. For example, 
many satellite datasets have a 1–2 day latency, sometimes even longer 
with data outages. If there were no delays or latency associated with 
input data, then RAT 2.0 can theoretically produce outputs within 24 h 
of the most recent satellite observation. We anticipate such a scenario to 
be a reality as IT capabilities improve and latency decreases for satellite 
missions and data providers. 

Compared to RAT 1.0, the web interface of RAT 2.0 is virtually un
changed, with only a new tab to show altimetry data for reservoirs that 
have JASON-3 overpasses. The new backend is available as an open- 
source project under the GNU General Public License v3.0 (GNU 

Fig. 11. Forecasted outflow using user-defined ΔS, as a percentage of maximum Storage of the reservoir.  
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GPLv3) license on GitHub at - https://github.com/pritamd47/rat_v2. 
The improvements in RAT 2.0 over RAT 1.0 are summarized in 

Table 2. 

4. Results and discussion results 

4.1. Reservoir evaporation 

The evaporative losses were found to be very nominal for the South 
East Asian reservoirs, with flux magnitudes less than 10% of inflow for 
30 out of 36 assessed reservoirs. The catchment areas of the remaining 6 
reservoirs are relatively small, which generate low inflow volumes. 
Moreover, out of 6 other reservoirs, 5 are primarily used for hydro
electricity. Operators usually keep the reservoir close to full to maximize 
hydroelectricity production, which explains the higher evaporation 
compared to the natural inflow (see Fig. 6). 

In general, the evaporation does not seem to be a major control on 
the water balance of the reservoirs of South East Asian River basins, 
which is consistent with previous study of Bonnema et al. (2016). 
However, in other river systems across the globe, evaporative losses may 
be significant for relatively drier river systems, such as in the Nile 
(Eldardiry and Hossain, 2019) and the Tigris-Euphrates. Since the RAT 
2.0 framework is designed for global applications, the evaporative losses 
are still taken into account for the hindcast and nowcast of the outflow 
from reservoirs, even though the evaporative losses do not play a major 
role in the currently studied Mekong Region. 

4.2. High-frequency surface area estimation – TMS-OS 

The surface areas using TMS-OS were obtained for the period of 
2019–2021 (3 years) due to the overlap of data between all the datasets 
– Sentinel-2, Landsat-8 and Sentinel-1. Fig. 7 (a) shows the 1–5 day 
surface area time-series obtained using the optical sensors employing 
the methodology described in Fig. 4 (a). At this step, rapid drops and 
rises in the estimated surface areas can be noted. These drops in surface 
areas do not reflect actual changes in reservoir surface area, rather, they 
are artifacts of the Cascade k-means clustering algorithm and limitations 
of the optical sensor to discriminate water from land. Since the Calinski 
and Harabasz (1974) criterion is used to select the number of clusters, a 
sub-optimal value for k can be selected by the criterion in case of 
challenging scenes. Such challenging scenes include, but are not limited 
to, cloud pixels that do not get identified accurately by the cloud 
masking algorithms, presence of high sediment load or algal conditions, 
or issues such as shadows in the scene due to terrain or clouds. In such 
cases, the clustering algorithm can select a higher value of k, that, even 
though has the lowest Calinski-Harabasz index value, the chosen cluster 
of water pixels may not represent all the water pixels in the scene. 
Choosing a sub-optimal value of k is a disadvantage of automatic se
lection of the number of clusters. However, these errors get identified, 
filtered and corrected in the next steps of the algorithm. 

Fig. 7 (b) and (c) illustrate the surface area time-series after applying 
filtering-1 and filtering-2, respectively (see Fig. 4 for filtering method
ology). At this stage, the filtered-out data points were replaced by no- 
data values. The number of points that get filtered out in each step 
highly depends on the choice of the threshold values. Using a trial-and- 
error method, a threshold value of ~5% of the nominal surface area of 
the reservoir for both the filtering steps was found to be a good balance 
between filtering out unphysical data points while retaining surface area 
values that could not be confidently identified as erroneous. These steps 
combined provide an automatic way of filtering out data points based on 

the agreement between surface area estimates from two different sen
sors with complementary strengths. 

Finally, Fig. 7 (d) shows the 1–5 day corrected surface area time- 
series, obtained by filling the previously filtered data points using 
trends from SAR derived surface area time-series. The resulting time- 
series is free of unphysical changes in reservoir surface areas. The ac
curacy of the estimated surface areas was tested by comparing the 
modeled storage change (△SRAT) with observed storage change (△SObs) 
in section 4.3 (see Fig. 8). 

4.3. Storage change 

The modeled storage changes derived from RAT 2.0-TMS-OS, RAT 
2.0-Altimetry and RAT 1.0 were compared against in-situ observed 
storage change. The in-situ storage change was defined as follows – 

△SObs = S(t2) − S(t1) (7a)  

where t1 and t2 are dates of consecutive satellite observation, and, S(t1)
and S(t2) are the corresponding in-situ storages. The ΔS, hence has a unit 
of [L3], representing the amount of storage change between consecutive 
satellite observations. The comparison metrics are summarized in 
Table 2. 

The estimated storage change values using Jason 3 altimeter eleva
tion data that were further corrected based on methodology described in 
section 3.2.5, were compared against the observed in-situ storage 
change. The comparison metrics are summarized in Table 3. Fig. 9 shows 
the derived water level after filtering out outliers, and the estimated 
storage change values overlaid on the observed in-situ storage change. 
With the highest correlation, the altimeter-based technique was found to 
be the most skillful in modeling the storage change, albeit at a 10-day 
frequency. 

Since the comparisons were performed at the temporal resolution of 
the respective models, the statistics corresponding to RAT 2.0-TMS-OS 
quantify the performance at a 1–5 day frequency, RAT 2.0-Altimetry 
at a 10 day frequency, and RAT 1.0 at a 30 day frequency. This un
derlines the inherent improvement brought forth by RAT 2.0, that is, 
observing the reservoir dynamics at a pentad frequency or less using 
optical and SAR, and at 10-days using altimetry, as opposed to the 
monthly frequency of RAT 1.0. Even at this frequency, RAT 2.0 performs 
better for every metric. Overall, the Kling-Gupta Efficiency (KGE) 
(Gupta et al., 2009) of the RAT 2.0 represent an improvement over the 
RAT 1.0 estimates in most of the cases. For the TMS-OS based estima
tions, the average correlation increased from 0.59 to 0.77, the average 
normalized RMSE decreased from 15.3% to 7.1%, and the average 
normalized MAE decreased from 9.6% to 4.0%. The RAT 2.0-Altimetry 
based estimates perform the best, with an average correlation of 0.82, 
normalized RMSE of 7.3%, and a normalized MAE of 5.3%. However, 
the sparse spatial coverage of the altimetry method limits the number of 
mappable reservoirs. 

4.4. 4.4.outflow 

The outflow estimates obtained using equation (1) were compared 
with the observed outflows for the three validation reservoirs. Addi
tionally, the outflow estimated by RAT 2.0 using the TMS-OS approach 
was compared against the outflows estimated by RAT 1.0 which are 
summarized in Table 4. The metrics were obtained for 1–5 day temporal 
resolution for RAT 2.0, and at a monthly frequency for RAT 1.0. Even at 
this higher temporal frequency, RAT 2.0 is able to improve the flux 
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estimations as compared to RAT 1.0. 
Since the outflow is estimated by assuming water mass balance at the 

reservoirs, the errors in the constituent fluxes can add up, propagating 
forward into the estimated outflow. For this reason, even though RAT 
1.0 was able to quantify the constituent fluxes, i.e., inflow and storage 
change with reasonable accuracy, the estimated outflow deviated 
significantly from the observed outflow. However, the improvements in 
the accuracy of modeled constituent fluxes by RAT 2.0 using a multi- 
sensor and approach for improving data quality, now allows for quan
tifiably better outflow estimation. The KGE values for RAT 2.0 are 
higher as compared to RAT 1.0 across the board (Table 4). All the KGE 
values for RAT 2.0 are also better than − 0.41, which is equivalent to the 
model performing as good as using the mean value of observations as a 
predictor (Knoben et al., 2019). The correlation of estimated outflow 
with the observed outflow at two out of three tested reservoirs increased 
from statistically insignificant correlation in RAT 1.0 to 0.38 and 0.59 
for Lam Pao and Sirindhorn respectively. The normalized RMSE 
decreased from an average of 36.3%, to 10.6%, while the normalized 
MAE decreased from an average of 25.8%, to 4.6%. 

4.5. Outflow forecasting 

Fig. 10 (a) shows the idea behind the outflow forecasting of RAT 2.0 
for the Lam Pao reservoir. To demonstrate the functionality of the 
outflow forecasting module, an example date of 28th March 2022 was 
chosen as the “current” observation. The forecasted ΔS was then derived 
using the rule curve for Lam Pao for a 15-day lead time at a 5-day 
temporal resolution to mimic the observations that can be obtained in 
that time-period. Using the simulated ΔS, in conjunction with the 
forecasted inflow for the time-period, the forecasted outflow was visu
alized. The “res” drop-down can be used to choose the reservoir of in
terest. In the front-end of RAT 2.0, the user has the option to select the 
reservoir of their choice using the “res” drop down menu, as demon
strated in Fig. 10 (a). The three validation reservoirs were used for 
demonstration purposes for this manuscript. 

Additionally, the second method of outflow forecasting, using ΔS 
defined by the stakeholders, is presented in Fig. 11. The user has to first 
select the reservoir of interest using the “res” drop-down menu. Once 
chosen, the user is presented with a table showing the “nowcast” esti
mates for inflow, ΔS, outflow and a column describing if the estimate is a 
“nowcast” or “forecast”. The user is also presented with three rows of 
inputs, corresponding to the next 3 anticipated satellite observation 
dates, where the expected storage change as a percentage of the 
maximum storage of the reservoir can be passed. The plot showing the 
ΔS and outflow will then update, based on the choice of ΔS, with the 
forecasted outflows highlighted as orange circles. 

5. Conclusion 

Regulation of rivers, and the issues associated with it, such as envi
ronmental degradation, conflicts among nations, and change in the river 
geomorphology are negatively affecting an increasing portion of the 
world. With a near-global coverage, publicly accessible methods and 
open-source code, and a record of reservoir operation dynamics, RAT 
1.0 (Biswas et al., 2021) provided information on reservoir operation 
dynamics for understanding these increasingly regulated river systems. 

Building on RAT 1.0, we made several improvements, based on 
stakeholder feedback, to develop a more skillful version 2.0 of the RAT 
framework. While these improvements were demonstrated using the 
Mekong River basin as an example, the newly developed framework can 

apply anywhere where reservoirs need to be monitored routinely. Using 
techniques such as, advanced unsupervised classification-based water 
area estimation, an ensemble of sensors with complementing strengths, 
and a tiered filtering and correction approach, we were able to estimate 
changes in the reservoir dynamics with higher accuracies than RAT 1.0. 
This method, called the TMS-OS, was found to be highly skillful in 
quantifying the storage change, with a higher average correlation, and 
lower RMSE and MAE values as compared to RAT 1.0. This bodes well 
for the Surface Water and Ocean Topography (SWOT) mission (https:// 
swot.jpl.nasa.gov/) which is planned for launch in 2022. The SWOT 
satellite mission is a joint mission of the National Aeronautics and Space 
Administration (NASA)) and Center National d’Etudes Spatiales (CNES), 
with contributions from the Canada Space Agency and the United 
Kingdom Space Agency (Biancamaria et al., 2016). SWOT is expected to 
monitor reservoir elevation and extent at a global scale using its wide- 
swath capability (Lee et al., 2010) and thereby complement altimeters 
that have limited but accurate spatial sampling. The SWOT mission is 
therefore expected to further improve our ability to predict the dynamic 
state of reservoirs. 

In general, RAT 2.0, with its use of multiple sensors and tiered 
methodologies, performed better than RAT 1.0 in characterizing the 
outflow from reservoirs. The ability of visualize the forecasted outflow, 
based on forecasted inflow and forecasted storage change, either from 
historical reservoir operation patterns, or expectation of dam operators 
based on human understanding, was also introduced in RAT 2.0. 

Even though significant strides were made in quantification of the 
reservoir operation dynamics, there is always room for improvement. 
The effect of upstream reservoir operations on the downstream reser
voirs remains to be taken into account and studied at the basin level. 
With the use of a greater suite of altimeters and sensors, combined with 
machine learning to automatically fill in inter-sensor gaps or data out
ages, we believe it may be possible to predict reservoir states consis
tently at the daily resolution, leading to higher accuracy in outflow 
estimation. Such future improvements can further help democratize the 
access to information on operations of dams towards more sustainable 
and equitable management of water resources. 
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Appendix

Fig. A.1. Effect of the choice of filtering 1 threshold on the surface area time-series – Lam Pao.   
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Fig. A.2. Comparison of modeled storage change with observed storage change for the three validation reservoirs. (a) ΔS for Sirindhorn, (b) ΔS for Ubol Ratana.  

Fig. A.3. Comparison of modeled storage change using altimeter measurement of reservoir water level with observed storage change for Sirindhorn, Thailand.  
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