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Abstract: We propose a globally scalable algorithm, ResORR (Reservoir Operations driven 13 
River Regulation), to predict regulated river flow and tested it over the heavily regulated basin of 14 
the Cumberland River in the US. ResORR was found able to model regulated river flow due to 15 
upstream reservoir operations of the Cumberland River. Over a mountainous basin dominated by 16 
high rainfall, ResORR was effective in capturing extreme flooding modified by upstream 17 
hydropower dam operations. On average, ResORR improved regulation river flow simulation by 18 
more than 50% across all performance metrics when compared to a hydrologic model without a 19 
regulation module. ResORR is a timely software algorithm for understanding human regulation of 20 
surface water as satellite-estimated reservoir state is expected to improve globally with the recently 21 
launched Surface Water and Ocean Topography (SWOT) mission. 22 
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Highlights: 27 
• A globally scalable algorithm, called ResORR, to predict regulated flow from naturalized 28 

flow and upstream reservoir storage is proposed. 29 

• ResORR requires globally available satellite-based reservoir storage and satellite-forced 30 
hydrologic model. 31 

• ResORR was tested on the heavily regulated river basin of the Cumberland river in 32 
Tennessee, USA. 33 

• On average, ResORR improved regulation river flow simulation by more than 50% across 34 

all performance metrics when compared to a hydrologic model without a regulation 35 
module.  36 

• ResORR is a timely software algorithm that can be further improved of its skill with 37 
reservoir storage data from the Surface Water and Ocean Topography (SWOT) mission. 38 
 39 
 40 

Data and Software Availability: The model code developed during this study is available on 41 
GitHub (https://github.com/UW-SASWE/ResORR) under the MIT license. Documentation on 42 
ResORR is available at - https://resorr.readthedocs.io/en/latest/? The github repository was created 43 
by first author Pritam Das (pdas47@uw.edu). Author’s experimental CPU environment used 44 
Linux Ubuntu OS, Intel Xeon Scalable Gold 6242 at 2.8GHz (16-Core), 192GB RAM.  45 
  46 
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1. Introduction 47 

Rivers have provided humans with food, water and energy security since human 48 
civilization first started to take shape in ancient valleys of Tigris-Euphrates, Indus and Nile rivers. 49 
This has only been made possible by means of control structures such as dams and reservoirs, 50 
which allow storage and release of water from the river according to human needs. Usually, water 51 
from the river is stored in reservoirs when the river naturally has higher flows, resulting in a net 52 
reduction in the downstream flow of the river. This storage is driven by human needs such as flood 53 
control or to meet future freshwater demand when natural availability may be insufficient. The 54 
converse happens during naturally occurring periods of low flows, when release of water from 55 
reservoirs artificially increases the downstream flow rate during the dry season to meet demand 56 
for water. This regulation of surface water, in the form of alteration of the streamflow from its 57 
natural pattern of discharge under pristine conditions, can be termed as river regulation. 58 

River regulation can change how the basin responds to a hydro-meteorological event in the 59 
form of precipitation or snowmelt, affecting its natural variability and streamflow timing. For 60 
instance, Wisser and Fekete (2009) found that the average residence time has increased by 42 days 61 
globally over the past century due to construction of reservoirs. Such disruption and alteration of 62 
natural conditions is even more profound at a regional scale, for instance, Bonnema and Hossain, 63 
(2017) note about 11-30% streamflow alteration in the Mekong basin, with the residence time of 64 
reservoirs varying from 0.09 to 4.04 years. Vu et al., (2021) estimate that reservoirs in the Mekong 65 
hold 50% of its dry season flow and 83% of its wet season flow. As a result, the high flows of the 66 
Mekong-river have reduced by 31%, while the low-flows have increased by 35%.  67 

River regulation can also have serious ecological repercussions. For instance, the unique 68 
annual flow reversal of the Tonle Sap River (TSR) leading to filling up the Tonle Sap Lake (TSL) 69 
during the wet season and draining it during dry season may cease to exist if the flood pulse of the 70 
Mekong River dampens by 50% and is delayed by a month (Pokhrel et al., 2018). The absence of 71 
this unique flow reversal may have a negative impact on aquatic biodiversity, particularly for 72 
fisheries and paddy planting (Marcaida et al., 2021). Similarly, in European rivers, high-flows 73 
appear to be down by 10% while low-flows are up by 8% (Biemans et al., 2011). Negative 74 
consequences are not limited to only ecological aspects but can also influence the regional demand-75 
and-supply of resources, with the potential to escalate pre-existing water conflicts. The 76 
construction and filling up of the Grand Ethiopian Renaissance Dam (GERD) on the Nile River 77 
has been a source of contention between Ethiopia and the other riparian countries – Egypt and 78 
Sudan. Eldardiry and Hossain, (2021) estimate that if unprepared, the High Aswan Dam (HAD) – 79 
a dam of existential importance to Egypt for its water-food-energy security – may take anywhere 80 
from 2 years to 7 years to fully recover following the filling-up of the GERD. Although, they also 81 
optimistically estimate that with cooperation and planning between the riparian countries, the 82 
recovery period can be limited to immediate 2 years. 83 

Apart from the direct alteration of streamflow timing of rivers, regulation due to dam and 84 
reservoir operations can have an indirect effect on other components of the eco-system. For 85 
instance, river regulation disturbs the natural sediment flow, resulting in a net reduction in 86 
sediment deposition along shorelines of rivers, estuaries and oceans (Dunn et al., 2019; Li et al., 87 
2021). River water temperature anomalies owing to thermal stratification in reservoirs have also 88 
been widely recognized (Ahmad et al., 2021; Cheng et al., 2020). Considering the sensitivity of 89 
aquatic life to the water temperature changes (Caissie, 2006), river regulation can negatively affect 90 
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the environmental suitability for aquatic organisms (Cheng et al., 2022). Such negative 91 
environmental consequences are a direct result of human decisions – which many consider 92 
necessary to support the demands of a rapidly growing population. A better understanding of 93 
human regulation of river flow, exacerbated by a changing climate and increasing freshwater 94 
demand, is urgently required to ensure a sustainable future. 95 

The coupled nature of human-water resources has led to developments in explicitly 96 
modeling reservoir operations in Large-Scale Hydrological Models (LHMs) and Global 97 
Circulation Models (GCMs) (Hanasaki et al., 2018; Wada et al., 2017). Existing methods to 98 
represent human activities in hydrological models rely on modeling the optimal reservoir release 99 
based on operating parameters such as the design role of the reservoir (Hanasaki et al., 2006), land-100 
water management schemes, downstream demand for water and energy (Alcamo et al., 2003; 101 
Biemans et al., 2011; Haddeland et al., 2006; Vanderkelen et al., 2022). Many of these human 102 
activities are often assumed or ‘parameterized’ due to lack of sufficient observational data on 103 
reservoir operations. Using such a parameterized approach, Zhou et al. (2016) found that in highly 104 
regulated basins, such as the Yellow and the Yangtze rivers, the seasonal reservoir storage 105 
variations can contribute up to 72% of the variability of the basin’s total storage. While such key 106 
insights can be obtained using generic schemes of reservoir operations, the underlying assumption 107 
of optimal reservoir operations may not always hold true. Stakeholders and reservoir managers 108 
must often deviate from optimal operating conditions based on a variety of reasons, such as 109 
adapting to regional water and energy demands, new hydro-political reality, environmental 110 
regulations, and changing weather and climate patterns that result in river flow to exceed the 111 
bounds of pre-dam historical flow records.  112 

In the past, modeling human decisions of reservoir operations using parameterizations or 113 
criteria-based assumptions has been the primary way for characterizing river-regulation due to a 114 
lack of publicly available observations on dam operations. However, to better understand river 115 
regulation, which is representative of the intricacies of operation of individual reservoirs, we need 116 
to characterize and quantify river regulation grounded in observations of reservoir operations 117 
(Biswas et al., 2021; Das et al., 2022; Zhou et al., 2016). Earth observing satellites, with their 118 
vantage of space and a multi-decadal record of observations on reservoir operations now provide 119 
an opportunity to fill this data availability gap by inferring reservoir operations from space 120 
(Bonnema & Hossain, 2017).  121 

Studies have used satellite remote sensing-based reservoir operations monitoring 122 
techniques to model the resulting regulation of streamflow. Reservoir releases are obtained by 123 
typically assuming water mass balance at the reservoirs, by modeling the inflow and storage 124 
change of the reservoirs. For instance, Yoon & Beighley, (2015) and Yoon et al., (2016) model 125 
the inflow at reservoirs in the Cumberland basin due to surface runoff and upstream releases using 126 
the Hillslope River Routing (HRR) model. The storage change is estimated using historical record 127 
of reservoir operations by Yoon & Beighley, (2015) and by simulating SWOT-like storage change 128 
estimates by Yoon et al., (2016). The performance of the simulated discharges in both cases 129 
improves with the inclusion of reservoirs. Han et al., (2020) also take the approach of simulating 130 
reservoir operations by deriving the operating curve of reservoirs using satellite observations. 131 
Reservoir releases from upstream reservoirs were added to the inflow of downstream reservoirs in 132 
a cascade reservoir system in the Mekong River basin. However, in this case the inclusion of 133 
upstream releases did not improve the performance of regulated streamflow estimates drastically. 134 
Dong et al., (2023) use historical satellite observations of reservoir water level to calibrate 135 
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parameters of a reservoir operation scheme. The reservoir releases are routed downstream using 136 
the Coupled Land Surface and Hydrologic Model System (CLHMS). All the existing studies rely 137 
on specific hydrological routing models to route the runoff and releases downstream. There doesn’t 138 
exist a method to leverage existing hydrological model setups, that are usually calibrated using 139 
data that is only accessible to local stakeholders. Furthermore, the availability of high frequency 140 
satellite observations near-real time provides an opportunity to move away from parameterization 141 
and simulation driven estimation of reservoir operations to a direct observation-based approach 142 
for modeling reservoir releases. Rather than relying on parameterized or criteria-based 143 
assumptions of reservoir operations, we can now use actual observation-based reservoir operations 144 
to quantify the regulation of flow in physical models. Because satellite observations today can 145 
track the dynamic state of reservoirs comprising surface area, water surface elevation, 146 
evapotranspiration losses, storage change and even outflow (Cooley et al., 2021; Hossain et al., 147 
2017; Lee et al., 2010; Okeowo et al., 2017; Zhao et al., 2022), there is now a stronger argument 148 
to move away from assumptions and parameterizations in representing human flow regulation in 149 
physical hydrologic models. 150 

Satellites such as the Landsat, Sentinel, and Jason series have been extensively monitoring 151 
hydrologically relevant aspects of the Earth’s surface, such as surface reflectance and elevation, at 152 
the global scale. For instance, Gao et al., (2012) were able to recreate storage variations of large 153 
reservoirs using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) 154 
satellite platform. Cooley et al., (2021) used NASA’s ICESat-2 satellite observations of water level 155 
height to estimate that about 3/5th of the Earth’s surface water storage variability takes place due 156 
to reservoirs. Moreover, the recently launched terrestrial hydrology-focused Surface Water and 157 
Ocean Topography (SWOT) satellite is now expected to improve the monitoring of surface water 158 
resources at an unprecedented scale and accuracy (Biancamaria et al., 2016). Together, these 159 
Earth-observing satellites provide an opportunity to independently track various aspects of the 160 
hydrological cycle, including reservoir operations (Bonnema & Hossain, 2017; Hossain et al., 161 
2017). Using multi-sensor satellite data on surface water, we can now build comprehensive, 162 
distributed, and scalable modeling platforms to simulate reservoir-river systems. The Reservoir 163 
Assessment Tool (RAT) is one such modeling platform that can estimate reservoir fluxes, 164 
comprising inflow to the reservoir, storage change, evaporative losses and outflow, solely using 165 
satellite data and hydrological modeling (Biswas et al., 2021; Das et al., 2022). More recent 166 
developments have made it easier to monitor reservoirs using RAT, further democratizing the 167 
availability of surface water data at the granular level for regulated river systems (Minocha et al., 168 
2023). This has allowed for both global and regional scale studies of the anthropogenic impact on 169 
terrestrial water storage (Biswas & Hossain, 2022) and floods (Suresh et al., 2024), especially in 170 
the regions of the world that lack a robust data collection and sharing infrastructure.  171 

Considering the importance and urgency of an observations-driven understanding of river 172 
regulation, there is now a need to develop methods to quantify river regulation due to reservoir 173 
operations that can be scaled globally based on publicly and globally available satellite 174 
observables. The wide availability of satellite-based reservoir operations data will only keep 175 
increasing with the recent launch of the SWOT mission that is optimized for surface water tracking, 176 
particularly for lakes and reservoirs. Here, the multi-satellite observations used by RAT to estimate 177 
storage change (Das et al., 2022) can be directly used as observations to quantify river regulation, 178 
obviating the need to separately model reservoir operations based on parameterizations or 179 
operating assumptions, which can be both difficult and unrepresentative of actual reservoir 180 
operations. Given the availability of multi-decadal satellite observations of surface water that are 181 
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now made widely accessible due to advancements in information technology, we are now uniquely 182 
positioned to predict regulated flow at a level of granularity that was not possible before. 183 
Estimation of river regulation grounded in observational data inherently represents the actual or 184 
likely decisions made by reservoir operators. The primary research question that this paper 185 
addresses is – How can river regulation due to operation of reservoirs be formulated in a globally 186 
scalable format using primarily satellite observations? The objectives of the paper are as follows:  187 

1. To develop a globally scalable river-regulation algorithm based on satellite observables 188 
or satellite derived reservoir data for predicting the human regulation of surface water. 189 

2. To investigate incorporation of the river-regulation algorithm in the RAT modeling 190 
platform for regulated rivers, and quantify its skill in capturing river flow regulation at 191 
a basin scale. 192 

2. Study area and Data 193 

2.1. The Cumberland River in Tennessee, US 194 

The Cumberland River is highly regulated by a system of 10 major dams and reservoirs 195 
with varying primary use cases, making it one of the most heavily regulated basins. The United 196 
States Army Corps of Engineers (USACE) Nashville District, own and operate 10 such multi-197 
purpose dam/reservoir projects on the Cumberland River, with the first dams being built in 1950s. 198 
These dams are used for hydropower generation, flood control, recreation, commercial navigation, 199 
public water supply, and fisheries and wildlife management – bringing in immense economic 200 
benefits to the region (Robinson, 2019). Figure 1 compares the daily discharge in the Cumberland 201 
River for two time-periods corresponding to unregulated conditions (1916-1920) and regulated 202 
conditions (2016-2020). The effect of regulation can be clearly seen in the figure, in the form of 203 
reduced range and variability in the discharge hydrograph. Studies suggest that such regulation has 204 
caused a sharp decline in the population and species variety of Mussels in the basin, which were 205 
plentiful when the river was unregulated (Neel & Allen, 1964; Tippit et al., 1995; Wilson & Clark, 206 
1914).  In addition to the highly regulated status of the basin, the availability of long periods of in-207 
situ observational data from the operating agencies makes this basin an ideal test bed for 208 
investigating anthropogenic river regulation (Bonnet et al., 2015). 209 
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 210 
Figure 1: Comparison of 5 years of daily discharge during (a) unregulated conditions, prior to 211 
construction and operation of major dams (1916-1920), and (b) regulated conditions, as observed 212 
in the Cumberland River near Nashville, TN. The flow rate in a regulated regime has a markedly 213 
attenuated peak-trough range – with low flows rarely dropping below 5000 cfs as compared to 214 
the unregulated regime when flow rates naturally used to drop to 1000 cfs. Source: United States 215 
Geological Survey (USGS). 216 

Originating in the Appalachian Mountains, the Cumberland River flows westwards 217 
through the states of Kentucky and Tennessee in the United States, draining a region of about 218 
18,000 sq. miles (~45,000 sq. km), before merging into the Ohio River. Ten dams – Martins Fork, 219 
Laurel, Wolf Creek, Dale Hollow, Cordell Hull, Center Hill, Old Hickory, J. Percy Priest, 220 
Cheatham, and Barkley dams – are operated by USACE, with some additional dams operated by 221 
the Tennessee Valley Authority (TVA) (Robinson, 2019). Limited by the availability of in-situ 222 
reservoir operations data, 8 of the USACE owned dams were included in this study. Based on the 223 
conclusions of the study, the authors believe that the results are not affected by the exclusion of 224 
the 2 USACE dams owing to their relatively insignificant (Martin’s Fork dam) to no storage 225 
(Cheatham dam). The region generally has a temperate, warm, and humid climate, with most of 226 
the precipitation occurring from December through May. 227 

 228 
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Figure 2: Map  of the Cumberland basin, showing locations of the reservoirs, the reservoir 229 
network and the location of the Cumberland basin in the US. 230 

2.2. In-situ and satellite observations of reservoir dynamics 231 

To develop, test and validate the river-regulation algorithm, observed in-situ data 232 
pertaining to reservoir operations – inflow, outflow, and storage – were used, which were obtained 233 
from the ResOpsUS (Steyaert et al., 2022) dataset. This dataset is a compilation of in-situ reservoir 234 
operations data for 679 major dams in the US, including 8 of the USACE dams in the Cumberland 235 
basin and one dam operated by the TVA, until November 2019. Daily storage change was 236 
calculated using the storage values in the dataset for all but 2 dams – Old Hickory and J. Percy 237 
Priest – which had missing storage data from July 2015 onwards. The storage change for these 238 
reservoirs were obtained by subtracting the reported Outflow from the Inflow (Δ𝑆 = 𝐼 − 𝑂). 239 
Readers are referred to section 7.2 for more discussion on this data preparation step. The in-situ 240 
data was also used to force the river-regulation model in certain experiments to compare the 241 
sensitivity of the river-regulation model to the accuracy of input data – a detailed discussion is 242 
provided in section 4.1. Additionally, the in-situ Area-Elevation Curve (AEC) of all the USACE 243 
reservoirs were also obtained from the Access to Water Resources Data – Corps Water 244 
Management System (CWMS) Data Dissemination tool (USACE, n.d.). 245 

The latest version of Reservoir Assessment Tool (RAT 3.0) was used to obtain the storage 246 
change and river flow under pristine (naturalized) conditions (assuming no upstream reservoirs). 247 
Originally developed by Biswas et al., (2021), the RAT framework is designed to improve access 248 
to information on reservoir dynamics, especially with recent developments leading to both a higher 249 
performance and accessibility (Das et al., 2022; Minocha et al., 2023). Using the default 250 
hydrological model of RAT, Variable Infiltration Capacity (VIC) (Liang et al., 1994), rainfall-251 
runoff modeling was performed at a 0.0625° spatial resolution. The inflow to each reservoir’s 252 
location under natural conditions was estimated using the VIC-Routing model (Lohmann et al., 253 
1998), which uses the linearized Saint-Venant equation to route streamflow within the watershed. 254 
The default VIC parameters, and sources of temperature and wind data used in RAT 3.0 were used 255 
to force the hydrological model. The precipitation was obtained from the ERA-5 reanalysis dataset 256 
(Hersbach et al., 2020). It must be noted here that the VIC-based reservoir inflow in RAT 3.0 does 257 
not take upstream reservoir operations into account, and hence the need to develop a model that 258 
can supplement the RAT framework by taking upstream regulation into consideration. A detailed 259 
discussion on how the hydrological model’s estimated inflow in pristine conditions is used in the 260 
river regulation model can be found in section 3.1. Since the in-situ AEC of the TVA-owned 261 
reservoir was not available, the default AEC option in RAT 3.0 was applied based on the Shuttle 262 
Radar Topography Mission Digital Elevation Model (SRTM DEM) (Earth Resources Observation 263 
And Science (EROS) Center, 2017). 264 

3. Methods 265 

3.1. Reservoir Operations driven River Regulation (ResORR) – 266 

Conceptual algorithm 267 

The core assumption of the ResORR algorithm is that the volume of water entering the 268 
reservoir, Inflow (I), is composed of two components – natural and regulated. The Natural Runoff 269 
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(NR) is defined as the component of surface runoff that flows naturally into the reservoir without 270 
passing through any upstream reservoirs. Similarly, the Regulated Runoff (RR) is the component 271 
of surface runoff that first gets intercepted by an upstream reservoir before being released based 272 
on the reservoir’s operations policy. The partitioning of the inflow to a reservoir is defined by the 273 
following equation, 274 

 𝐼 = 𝑁𝑅 + 𝑅𝑅  (1) 

Essentially, the problem of estimating the inflow at any reservoir is decomposed into the 275 
two parts of estimating the natural and regulated components of the incoming streamflow. A 276 
detailed discussion on estimating these sub-components of inflow is provided later in the section. 277 
The estimated inflow to a reservoir in this scheme will, hence, be affected by regulation due to 278 
upstream reservoir operations. 279 

For example, consider the example of a two-reservoir system (A and B), where reservoir 280 
B is downstream of reservoir A, depicted in the schematic in Figure 3(a). In this scenario, the 281 
inflow at reservoir B would have contributions from the outflow of the upstream reservoir A in the 282 
form of RR (i.e., 𝑅𝑅 ≠ 0), in addition to the NR. On the other hand, since reservoir A has no 283 
upstream reservoirs, the inflow to the reservoir would be fully natural, i.e., 𝑅𝑅 = 0 and 𝐼 = 𝑁𝑅. 284 

 285 
Figure 3: Conceptual schematic of the ResORR model. Panel (a) depicts the flow of surface runoff 286 
and streamflow, along with the contribution of the natural (green arrows) and regulated (red arrows 287 
along the stream) components, referred to in this paper as Natural Runoff (NR) and Regulated 288 
Runoff (RR) to the Inflow (𝐼 = 𝑁𝑅 + 𝑅𝑅) to a reservoir. Panel (b) describes the components of 289 
the water balance equation (𝑂 = 𝐼 − Δ𝑆) used at the reservoir to obtain the outflow from the 290 
reservoir, which is treated as the regulated component of the downstream streamflow. 291 

As discussed above, the RR is defined as the component of inflow to a reservoir due to 292 
upstream reservoir releases. It is estimated as the sum of all Outflow (O) of the upstream reservoirs. 293 

 𝑅𝑅𝑖 = ∑ 𝑂𝑗

𝑁

𝑗

  (2) 
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Where 𝑅𝑅𝑖 is the incoming Regulated Runoff to reservoir 𝑖; 𝑂𝑗 is the Outflow from the 𝑗𝑡ℎ 294 

upstream reservoir; N is the total number of upstream dams for reservoir 𝑖.  295 

The NR is defined as the volume of water inflow to the reservoir due to surface runoff 296 
unaffected by any upstream reservoir operations., i.e., the generated surface runoff drains directly 297 
to the reservoir, without passing through any other reservoir. This surface runoff is generated in 298 
the part of the watershed which is not shared by any other upstream dams. For instance, in Figure 299 
3, the orange and red shaded regions of the watershed will generate the NR for reservoirs B and A 300 
respectively. The NR for a reservoir can be estimated using the theoretical inflow into a reservoir 301 
if there were no upstream dams, which is referred to as the Theoretical Natural Runoff (TNR) in 302 
this paper. The Theoretical Natural Runoff (TNR) refers to the inflow to a reservoir if none of the 303 
upstream dams existed. The TNR can be calculated using the following equation – 304 

 𝑇𝑁𝑅𝑖 = 𝑁𝑅𝑖 + ∑ 𝑁𝑅𝑗

𝑁

𝑗

  (3) 

Where, 𝑇𝑁𝑅𝑖 is the Theoretical Natural Runoff of reservoir 𝑖; 𝑁𝑅𝑖 is the Natural Runoff 305 
to reservoir 𝑖; and  𝑁 is the total number of upstream dams of reservoir 𝑖 along the same river 306 
network. For example, in the schematic in Figure 3, the TNR of reservoir A and B would be 𝑁𝑅𝐴 307 
and 𝑁𝑅𝐵 + 𝑁𝑅𝐴 respectively.  308 

Since the TNR represents streamflow into a reservoir in pristine conditions (without 309 
considering upstream reservoirs), it is analogous to the modeled inflow at reservoirs using 310 
traditional hydrologic models which do not take reservoir operations into account. The NR of any 311 
reservoir can be obtained by rearranging the terms of (3, and calculating the NR for reservoirs by 312 
iteratively moving downstream for each time-step. The NR for any reservoir can hence be obtained 313 
using the TNR of the reservoir, and the NR of the upstream reservoirs using the following equation 314 
– 315 

 𝑁𝑅𝑖 = 𝑇𝑁𝑅𝑖 − ∑ 𝑁𝑅𝑗

𝑁

𝑗

  (4) 

Using the estimated NR and RR components, the inflow to a reservoir under regulated 316 
conditions is then calculated using (1. Using the storage change of the reservoir, obtained either 317 
in-situ or using satellite estimates, the outflow can then be calculated using the water balance 318 
equation – 319 

 𝑂 = 𝐼 − ΔS  (5) 

Where O, I and ∆S are the outflow, inflow and storage change of a reservoir respectively. 320 
In the current form of the mass balance equation of the reservoir fluxes, the evaporative losses are 321 
not considered. For semi-arid to arid parts of the world, such as the Western US, the Middle East, 322 
and Australia, evaporation from reservoirs can play an important role in reservoir water balance 323 
(Zhao et al. 2022). For the application ResORR over the Cumberland basin, which has a humid 324 
subtropical climate and is a relatively wet region. Here, the evaporative losses from reservoirs do 325 
not play a major role in the water balance and was hence safely ignored. For instance, the 326 
evaporation from the Wolf Creek reservoir is about only 1-2% of the total inflow to the reservoir 327 
annually. 328 
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These equations were solved for the reservoirs mapped in 329 

 330 

Figure 2 by traversing down the network of reservoirs for each time-step. Since the TNR 331 
is obtained by routing water through the watershed, the travel time of water between the reservoirs 332 
is inherently considered in the subsequent calculations that depend on this routed hydrograph. The 333 
proposed methodology is not a routing scheme, rather it operates on precomputed hydrographs 334 
obtained by routing water through a watershed using traditional routing algorithms. The proposed 335 
algorithm uses observational reservoir operations, either from in-situ or satellite platforms to adjust 336 
the streamflow for regulation due to upstream reservoir operations in a post-processing fashion. 337 

To assess the performance of the model, sensitivity to uncertainties in the model inputs, 338 
and generally investigate the limitations of the model, various experiments were setup which are 339 
discussed in section 4.1. To test the theoretical robustness of the proposed river regulation 340 
algorithm as a mass conserving scheme, we set up a two inter-connected linear reservoir problem 341 
where outflow is proportional to water storage and according to the elevation head available at the 342 
outlet. Using this set up we generated regulated inflow that should theoretically happen at the 343 
second reservoir (reservoir 2) based on storage and regulation effect of the upstream reservoir 344 
(reservoir 1). Consequently, we tested the algorithm’s ability to mimic the same regulated inflow 345 
to reservoir 2 using storage and upstream unregulated inflow of reservoir 1 that would be available 346 
in a globally scalable manner from satellite observations and modeling platforms such as RAT 3.0. 347 
Our algorithm demonstrated perfect theoretical consistency as a mass conserving scheme. More 348 
details on this theoretical robustness check of the ResORR algorithm are provided in the appendix 349 
(section 7). 350 

3.2. Reservoir network 351 

The reservoir network represents the connectivity of the reservoirs in the model and is 352 
represented by a directed tree data structure, with the nodes representing the reservoirs and the 353 
links depicting their connectivity, while preserving the order of reservoirs. The model first 354 
topologically sorts the reservoir network, to order them such that the water balance computations 355 
of upstream reservoirs are performed before the subsequent downstream reservoir. At each time-356 
step, the model iterates over the topologically sorted reservoir network, and solves the series of 357 
equations discussed in 3.1. 358 
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The reservoir network is generated using the location of reservoirs and the Global 359 
Dominant River Tracing (DRT) dataset (Wu et al., 2011). Since the river-regulation model is 360 
designed as an add-on to the RAT framework, the script to generate the reservoir network can use 361 
the inputs and intermediary outputs of RAT to generate the reservoir network. 362 

4. Experiments and Results 363 

4.1. River regulation experiment setups using in-situ data 364 

The ResORR algorithm is fully described by equations (1)-(5), which uses estimates of 365 
streamflow under pristine conditions from a hydrological model. However, the uncertainties in the 366 
estimations of hydrological model may propagate as uncertainty in the river-regulation model. 367 
Experiments were performed to isolate the performance of the core of the algorithm, its ability to 368 
partition the inflow between the natural and regulated components using in-situ observations in 369 
place of hydrological model and satellite estimates. By reducing uncertainties in certain parts of 370 
the algorithm, the performance of the individual components could be investigated, shedding light 371 
on the sensitivity of the algorithm components to the input data accuracy. Moreover, the observed 372 
in-situ ∆S was used in these experiments to gauge the baseline performance of ResORR using best 373 
available reservoir operations data, avoiding the higher uncertainties normally associated with 374 
satellite estimates of storage change.  375 

To investigate the strengths and weaknesses of ResORR, especially in terms of scalability, 376 
the experiment designs were iteratively modified and updated in order from E1 to E4 over the 377 
period of 2015-2019. Details about the experiment designs and the rationale behind the 378 
experiments are summarized in Table 1. 379 

Table 1: Summary of the experiments performed on the river regulation model along with the 380 
corresponding symbols used in the performance comparison plot (Figure 4). 381 

Exp. 

In-situ 

data 

used 

Description Rationale 

E1 

 
∆S 

In-situ ∆S was used in eqn. (5) 

to estimate O. VIC hydrologic 

model was not calibrated for 

estimating natural inflow. 

Uncertainties in satellite estimates of ∆S 

are minimized in this experiment. 

E2 

 
O 

Observed O was used in eqn. 

(3) to estimate RR.  

Uncertainties in otherwise estimated O, 

due to uncertainties in modeled I are 

minimized. The RR obtained as such would 

reflect the “theoretically” best estimate of 

incoming regulated streamflow. 

E3 

 
I, ∆S 

Observed I was used in eqn. (4) 

only at the most upstream dam, 

where NR = TNR = I. 

In-situ ∆S was used in (5) to 

estimate O. 

For upstream-most reservoirs all the 

incoming streamflow would be due to 

natural runoff, hence, by using the 

observed I, the uncertainties due to 

modeled I are minimized. The RR in this 
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case would reflect the “theoretical best 

estimate” of the downstream regulated 

streamflow. 

E4 

 

∆S 

In-situ ∆S resampled to a 16-

day frequency was used in eq 

(5) to estimate O. The VIC 

hydrological model, forced 

with satellite data, was 

calibrated at upstream most 

dams of Center Hill Dam, Dale 

Hollow Dam, and Laurel Dam. 

The modeled inflow to the upstream most 

dams were calibrated using the observed 

inflow, essentially, minimizing the 

uncertainties at the upstream boundary of 

the reservoir network. This represents the 

ResORR in its globally scalable form under 

the scenario of perfect ∆S. The resampling 

to 16-day frequency was done to simulate 

the observational frequency of the satellite 

used later in this study. 

The regulated inflows obtained at the 4 dams, which have at least one upstream dam were 382 
compared against the observed inflow at those same dams. The comparison statistics measuring 383 
the performance of the river regulation model against observed inflow data are summarized in 384 
Figure 4. To understand how the river regulation algorithm is performing under various input 385 
scenarios and assumptions, one should compare the relative position of the symbols for each dam 386 
along the horizontal axis only. The TNR, obtained from the VIC hydrological model are denoted 387 
using grey and black circles, corresponding to the streamflow modeled using default parameter 388 
values and calibrated parameters. Formulation of performance metrics are provided in Appendix 389 
(section 7). 390 
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 391 
Figure 4: River regulation model performance for E* experiments using in-situ reservoir 392 

dynamics data. 393 

Compared to the uncalibrated VIC streamflow estimates, the performance of the river 394 
regulation model in the E1 experiment in improving the accuracy of regulated inflow seems to be 395 
reduced. In other words, ResORR using in-situ ∆S, but with uncalibrated VIC flow at upstream 396 
most location does not improve the skill in predicted regulated inflow at downstream dam 397 
locations. However, on taking a closer look at the hydrographs comparing modeled inflow, TNR 398 
and observed inflow in Figure 5, it is apparent that the variability in the observed inflow, which is 399 
regulated inflow, is more closely replicated by the variability in the modeled inflow than the TNR. 400 
This likely suggests that even though the overall performance of ResORR gets reduced as a 401 
regulated streamflow predictor, the signature of human regulation is still captured well. 402 

While analyzing the observed inflow hydrographs of two consecutive dams (Cordell Hull 403 
and Old Hickory dams) in Figure 6, a closer relationship between the downstream inflow and 404 
upstream outflow can be noted. It is clear that the upstream outflow plays a dominant role in 405 
dictating the downstream and regulated inflow at the next downstream dam as would be normally 406 
expected in the event of no lateral flow diversion. This relationship is further explored in the E2 407 
experiment, where the daily in-situ outflow is used to calculate the RR to the downstream dam. 408 
Overall, the results improve across the board in the E2 experiment, underlining the role of upstream 409 
reservoir releases in predicting the downstream regulated streamflow. The E2 experiment also 410 
stresses the importance of having high accuracy estimates of reservoir storage data. 411 
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 412 
Figure 5: Hydrographs comparing the Modeled, Observed and TNR at Old Hickory Dam, which 413 

is the second most downstream dam in the network. The observed inflow is regulated inflow. 414 

In the E3 experiment, the observed inflow to the upstream most dams was used as the NR. 415 
In most cases, the performance of the streamflow predictions still improved when adjusted for 416 
upstream regulation, as compared to the TNR. While this experiment suggests that if the accuracy 417 
of inflow estimates at the upstream most boundary conditions are accurate, that can improve the 418 
regulated streamflow estimates along that downstream network as well. Following this, the final 419 
E4 experiment, representative of the performance of the proposed and scalable river regulation 420 
model under accurate ∆S was performed. Here the VIC hydrological model was calibrated using 421 
the observed inflow at the upstream most dams. The result of this experiment shows overall 422 
improvement for nearly all the reservoirs. These results indicate that using in-situ reservoir 423 
dynamics, specifically storage change, and inflow hydrograph modeled without considering 424 
reservoirs (TNR) can be used to improve the performance of downstream streamflow estimates.  425 

 426 
Figure 6: Observed inflows at two consecutive dams. The upstream Cordell Hull Dam drains into 427 
the downstream Old Hickory Dam, with the effect of upstream reservoir dynamics.  428 

Moreover, the experiment results also shed light on the relationship between the model 429 
performance and the number of upstream dams. For instance, taking the case of the Wolf Creek 430 
dam (7.4 km3 storage capacity), which only has one upstream dam (Laurel Dam, 0.5 km3 storage 431 
capacity), the performance of the model does not improve as significantly as compared to the TNR. 432 
On the other hand, Cordell Hull Dam (run-of-the-river) is highly regulated and has two upstream 433 
dams, the Dale Hollow dam (2.1 km3) and the Wolf Creek dam, and the performance of the 434 
streamflow estimates improves significantly by almost 50% across all the dams in the basin. 435 
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Overall, the results show that considering the effect of upstream regulation improves the 436 
performance of the streamflow estimates at the downstream dams. 437 

4.2. River regulation using satellite estimates of reservoir storage change 438 

Now that E4 results established robustness of the proposed river regulation algorithm, we 439 
explore how well ResORR fares with satellite-derived ∆S that will have higher uncertainty. The 440 
inundation area of the reservoirs were obtained using the Landsat-8 and Sentinel-1 satellite data 441 
from June 2018 to October 2019, using the TMS-OS algorithm described by Das et al., (2022). 442 
The storage change of the reservoirs were then obtained using these surface area estimates and in-443 
situ Area-Elevation Curve (AEC), using the following equation – 444 

Δ𝑆𝑡 =
𝐴𝑡+𝐴𝑡−1

2
× (ℎ𝑡 − ℎ𝑡−1)       (6) 445 

Here the Δ𝑆 in equation 6 is the total volumetric storage change, 𝐴 is the inundation area, 446 
and ℎ is the water level height corresponding to the inundation area, obtained using the AEC 447 
relationship. The date of satellite observation is denoted by 𝑡, with 𝑡 − 1 referring to the last 448 
satellite observation. For instance, since Landsat-8 has a revisit period of 16 days, the estimated 449 
storage change would refer to the volumetric storage change within those 16 days. These storage 450 
change estimates were transformed to daily values by linearly distributing the volumetric change 451 
over 16 days. Based on the findings of the previous section, the VIC hydrological model was 452 
calibrated at the upstream most dams, like the E4 experiment. The modeled inflow as such and the 453 
streamflow estimates from VIC were compared against the observed in-situ inflow. The results are 454 
summarized in Figure 7. 455 

Similar to the results in the previous section, for the Cordell Hull and Old Hickory, both 456 
run-of-the-river dams having upstream dams with large storage capacities, ResORR performance 457 
increases significantly across all metrics. For the Wolf Creek dam, adjusting for the upstream 458 
Laurel Dam’s operations, ResORR performance does not increase as drastically, which can be 459 
explained due to the relatively smaller size of the upstream Laurel Dam. In contrast, the 460 
performance increases the most for the Cordell Hull Dam, which is preceded by two large dams, 461 
Wolf Creek Dam and Dale Hollow dam. The improvement in performance gradually reduces 462 
downstream with marginal improvement for the downstream most Barkley Dam. This can be 463 
explained by the run-of-the-river nature of the upstream dams, the storage change dynamics of 464 
which can be difficult to quantify using satellite observations. Overall, the results suggest that river 465 
regulation due to dams can be characterized by the proposed ResORR algorithm using satellite 466 
estimates of reservoir storage dynamics. Adjusting for flow regulation due to upstream reservoir 467 
storage change improves the overall inflow predictions in a regulated basin. 468 
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 469 
Figure 7: ResORR model performance using satellite derived reservoir storage change. 470 

5. Conclusions and Discussion 471 

Rivers of the 21st century are marked with numerous reservoirs, which store, and release 472 
water based on their primary objectives, playing a vital role in providing food, water, and energy 473 
security. However, such reservoir operations can alter the natural streamflow patterns, reducing 474 
the water availability downstream by storing water during high flows, and vice versa. In this study, 475 
we developed and tested a scalable river regulation model, ResORR, to predict the regulation of 476 
streamflow due to upstream reservoir operations. Overall, we find that adjusting for upstream 477 
reservoir operations via storage change improves the accuracy of downstream streamflow 478 
predictions. The theoretical basis of the ResORR model was tested using in-situ data in the heavily 479 
regulated Cumberland basin. The results stress the importance of having high accuracy estimates 480 
of both the storage change and the hydrological model. Moreover, we find that if the hydrological 481 
model can be calibrated for boundary conditions of the reservoir network, i.e., at the upstream 482 
most dams, significant improvement can be achieved in predicting regulated inflow at all the 483 
downstream dam locations. 484 

Currently, the reservoir network is automatically generated using the dam locations and the 485 
DRT flow directions, and hence, any inter- or intra-basin diversions between reservoirs or lateral 486 
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diversions cannot yet be modeled. The regulation caused by reservoirs is also determined by its 487 
storage capacity, and in a case where a small reservoir drains into a larger reservoir, the algorithm 488 
adds little value to the streamflow predictions. Moreover, if the storage change of the upstream 489 
reservoir is relatively low, the performance improvement of regulated streamflow estimation 490 
downstream can be limited. Such a case was experienced in a case-study of the devastating flood 491 
due to extreme precipitation in the state of Kerala, India, in 2018. Due to high precipitation leading 492 
up to the main extreme precipitation event, the reservoirs were already at full supply level. All the 493 
incoming inflow due to the extreme precipitation event had to be released by the upstream 494 
reservoir, with little to no storage change. Even with these limitations, the ResORR algorithm can 495 
play an important role in quantifying the regulation of river flow due to reservoirs in changing the 496 
world’s river systems. 497 

With advancements in satellite observations-based reservoir dynamics tracking, especially 498 
the RAT 3.0, which has democratized access to reservoir operations information, it is now possible 499 
to easily track the operations of reservoirs globally. Building on top of the RAT framework, the 500 
proposed river regulation algorithm ResORR would also be able to characterize the regulation of 501 
river flow using only satellite-tracked reservoir states at the global scale. The algorithm was 502 
developed over the Cumberland basin which is in a humid region. The evaporative losses from the 503 
reservoirs therefore play a relatively minor role compared to the inflow into the reservoir due to 504 
surface runoff. Hence, the evaporative losses were not considered while calculating the outflow. 505 
However, the evaporative losses play an important role in arid region. For application over such 506 
regions, the evaporation from the reservoirs can be included in the water mass balance of the 507 
reservoirs in eq. (5). The ResORR software architecture is also designed to work seamlessly within 508 
the RAT framework, i.e., it can run entirely using the RAT model outputs and intermediary files. 509 
With this river regulation tool, the RAT framework will be able to not only infer reservoir 510 
dynamics, but also quantify the regulation of streamflow caused by the upstream reservoir 511 
operations. We can expect ResORR to soon become a truly scalable algorithm based on the 512 
globally available reservoir storage change data of unprecedent accuracy from the Surface Water 513 
and Ocean Topography mission. 514 
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7. Appendix 703 

7.1. River-regulation algorithm ResORR tested in a theoretical two-704 

reservoir system using synthetic data 705 

A theoretical two inter-connected linear reservoir system with artificially generated 706 
headwater flow inputs was used to test the theoretical robustness of the mass conserving and 707 
numerical stability of the ResORR algorithm. This classic problem (Figure 8) also helped visualize 708 
the outputs of ResORR algorithm and verify if mass balance is maintained.  709 

 710 
Figure 8: (a) Schematic showing the two-reservoir system setup. The black arrow denotes the 711 

direction of flow of water. (b) Hydrographs showing inflow and outflow from nodes 1 and 2. In 712 
this case, three input pulses of 1000 L3/T units were fed into node 1, and its outflow was treated 713 

as the inflow to the downstream node 2. The inflow and outflow at node 2 represent the 714 
‘theoretical’ answer for the ResORR algorithm to be theoretically valid. 715 

A system of two interconnected linear reservoirs were set up, like the schematic shown in 716 
Figure 8. To understand how the outflow from an upstream reservoir would affect the inflow to 717 
the downstream reservoir, we first generated a synthetic headwater inflow hydrograph for reservoir 718 
1and then applied ResORR to predict the regulated inflow to the downstream reservoir at node 2. 719 
Both the reservoirs were provided with a constant water influx of 100 L3/T units in the form of 720 
natural runoff, NR. Additionally, the upstream reservoir, at node 1, was provided with three pulses 721 
of high inflow volumes of 1000 L3/T units. The reservoirs were treated as linear reservoirs, where 722 
the outflow from a reservoir at any given time as a linear function of the instantaneous storage, 723 
and can be defined as follows – 724 

𝑂 = 𝐾 × 𝑆 725 

Where, 𝐾 [𝑇−1] is the reaction factor, which determines how quickly the reservoir drains 726 
(𝐾 = 0.01 in this experiment). The outflow from the upstream reservoir at node 1 was then treated 727 
as the regulated runoff, RR for the downstream reservoir, node 2. Using the inflows and outflows 728 
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obtained at both the reservoirs, the storage change was obtained using (5). The theoretical natural 729 
runoff, TNR, was also obtained using (3). The ResORR was then run using this simulated storage 730 
change and TNR information as inputs, to model the inflow at both the reservoirs. The modeled 731 
inflow of ResORR was then compared with the synthetically generated inflow at the downstream 732 
node 2, with a perfect match between them. The closure of water balance was also tested by 733 
comparing the total inflow volumes in the modeled and synthetic inflow. 734 

7.2. Performance metrics used for assessing ResORR 735 

The following five commonly used performance metrics were used in this study to quantify 736 
the skill of the river regulation model -  737 

Metric Equation Description 

Nash-Sutcliffe 

Efficiency 

(NSE) 

(Nash & 

Sutcliffe, 

1970) 

1 −
∑ (𝑄𝑂

𝑡 − 𝑄𝑀
𝑡 )2𝑇

𝑡=1

∑ (𝑄𝑂
𝑡 − 𝑄𝑂

̅̅ ̅̅ )2𝑇
𝑡=1

 

 

Where, 𝑄𝑂
𝑡  and 𝑄𝑀

𝑡  are observed and 

modeled streamflow respectively. 𝑄𝑂
̅̅ ̅̅  is 

the mean observed streamflow. 

The NSE can vary between −∞ 

and 1. A value of 1 indicates a 

perfect match between observed 

and modeled values. A value of 0 

indicates that the model 

predictions are as performant as 

using the mean of the observed 

values as a predictor. Higher 

values are better. 
Kling-Gupta 

Efficiency 

(KGE) 

(Gupta et al., 

2009) 

1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 

 

Where, 𝑟 is the linear correlation 

between modeled and observed values, 

𝛼 = (
𝜎𝑀

𝜎𝑂
− 1)

2
, 𝜎𝑀 and 𝜎𝑂 are the 

standard deviations of the modeled and 

observed values, 𝛽 = (
𝜇𝑀

𝜇𝑂
− 1)

2
, 𝜇𝑀 and 

𝜇𝑂 are mean modeled and observed 

values. 

The KGE varies between −∞ and 

1. A value of -0.41 indicates 

model performance equal to 

using the mean of the observed 

values as a predictor (Knoben et 

al., 2019). Higher values are 

better. 

Pearson’s R 𝑐𝑜𝑣(𝑄𝑂 , 𝑄𝑀)

𝜎𝑂𝜎𝑀
 

 

Where, 𝑐𝑜𝑣(𝑄𝑂 , 𝑄𝑀) is the covariance of 

the observed and modeled values. 𝜎𝑀 and 

𝜎𝑂 are the standard deviations of the 

modeled and observed values 

The Pearson’s R can vary from -

1 to 1, where 1 indicates a perfect 

positive linear correlation. A 

value of 0 indicates no 

correlation.  

Normalized 

Root-Mean 

Squared Error 

(NRMSE) 

√∑ (𝑄𝑂 − 𝑄𝑀)2𝑁
𝑖=1

𝑁
max(𝑄𝑂) − min(𝑄𝑂)

 

Where, max(𝑄𝑂) and min(𝑄𝑂) are the 

maximum and minimum observed 

streamflow values. 

The NRMSE represents the 

standard deviation of the 

residuals as a fraction of the 

range of the observed values. 

Lower values are better. 
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Normalized 

Mean Absolute 

Error (NMAE) 

∑ |𝑄𝑀 − 𝑄𝑂|𝑁
𝑖=1

𝑁
max(𝑄𝑂) − min(𝑄𝑂)

 

Where, 𝑁 is the number of observations, 

|𝑄𝑀 − 𝑄𝑂| is the absolute difference of 

modeled and observed values 

The NMAE represents the 

average absolute difference 

between observed and modeled 

values as a fraction of the range 

of observed values. Lower values 

are better. 

7.3. Handling missing In-situ storage data 738 

Two dams in the basin, Old Hickory and Laurel, had missing in-situ storage data after April 739 
2015, due to which storage change could not be calculated using observed (in-situ) storage. This 740 
missing data was filled by assuming water mass-balance owing to inflow and outflow from the 741 
reservoirs, Δ𝑆 = 𝐼 − 𝑂. 742 

 743 

 744 

 745 
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